Skip to main content

Gene-based large scale LD-mapping of rheumatoid arthritis-associated genes

  • Chapter
The Hereditary Basis of Rheumatic Diseases

Part of the book series: Progress in Inflammation Research ((PIR))

  • 532 Accesses

Summary

Large-scale LD mapping has been successful at identifying RA-associated polymorphisms. Interestingly they seemed to identify RA-specific gene(s) and also gene(s) that contribute to multiple autoimmune diseases. Another important issue in the investigation of disease-associated polymorphisms is that polymorphisms vary among ethnic groups; therefore genetic studies should be carefully and extensively carried out with special attention paid to ethnic variations in polymorphisms and combinations of multiple genes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ozaki K, Ohnishi Y, Iida A, Sekine A, Yamada R, Tsunoda T, Sato H, Sato H, Hori M, Nakamura Y, Tanaka T (2002) Functional SNPs in the lymphotoxin-alpha gene that are associated with susceptibility to myocardial infarction. Nat Genet 32: 650–654

    Article  PubMed  CAS  Google Scholar 

  2. Ozaki K, Inoue K, Sato H, Iida A, Ohnishi Y, Sekine A, Sato H, Odashiro K, Nobuyoshi M, Hori M et al (2004) Functional variation in LGALS2 confers risk of myocardial infarction and regulates lymphotoxin-alpha secretion in vitro. Nature 429: 72–75

    Article  PubMed  CAS  Google Scholar 

  3. Kanazawa A, Tsukada S, Sekine A, Tsunoda T, Takahashi A, Kashiwagi A, Tanaka Y, Babazono T, Matsuda M, Kaku K et al (2004) Association of the gene encoding wingless-type mammary tumor virus integration-site family member 5B (WNT5B) with type 2 diabetes. Am J Hum Genet 75: 832–843

    Article  PubMed  CAS  Google Scholar 

  4. Kizawa H, Kou I, Iida A, Sudo A, Miyamoto Y, Fukuda A, Mabuchi A, Kotani A, Kawakami A, Yamamoto S et al (2005) An aspartic acid repeat polymorphism in asporin inhibits chondrogenesis and increases susceptibility to osteoarthritis. Nat Genet 37: 138–144. Epub 2005 Jan 9

    Article  PubMed  CAS  Google Scholar 

  5. Yamada R, Ymamoto K (2005) Recent findings on genes associated with inflammatory disease. Mutat Res 573: 136–151

    PubMed  CAS  Google Scholar 

  6. Sherry ST, Ward MH, Kholodov M, Baker J, Phan L, Smigielski EM, Sirotkin K (2001) dbSNP: the NCBI database of genetic variation. Nucl Acids Res 29: 308–311

    Article  PubMed  CAS  Google Scholar 

  7. Gregersen PK (2003) Teasing apart the complex genetics of human autoimmunity: lessons from rheumatoid arthritis. Clin Immunol 107: 1–9

    Article  PubMed  CAS  Google Scholar 

  8. Laitinen T, Polvi A, Rydman P, Vendelin J, Pulkkinen V, Salmikangas P, Makela S, Rehn M, Pirskanen A, Rautanen A et al (2004) Characterization of a Common Susceptibility Locus for Asthma-Related Traits. Science 304: 300–304

    Article  PubMed  CAS  Google Scholar 

  9. Newton-Cheh C, Hirschhorn JN (2005) Genetic association studies of complex traits: design and analytical issues. Mutat Res 573: 54–69

    PubMed  CAS  Google Scholar 

  10. Tokuhiro S, Yamada R, Chang X, Suzuki A, Kochi Y, Sawada T, Suzuki M, Nagasaki M, Ohtsuki M, Ono M et al (2003) An intronic SNP in a RUNX1 binding site of SLC22A4, encoding an organic cation transporter, is associated with rheumatoid arthritis. Nat Genet 35: 341–348

    Article  PubMed  CAS  Google Scholar 

  11. Suzuki A, Yamada R, Chang X, Tokuhiro S, Sawada T, Suzuki M, Nagasaki M, Nakayama-Hamada M, Kawaida R, Ono M et al (2003) Functional haplotypes of PADI4, encoding citrullinating enzyme peptidylarginine deiminase 4, are associated with rheumatoid arthritis. Nat Genet 34: 395–402

    Article  PubMed  CAS  Google Scholar 

  12. Haga H, Yamada R, Ohnishi Y, Nakamura Y, Tanaka T (2002) Gene-based SNP discovery as part of the Japanese Millennium Genome Project: identification of 190,562 genetic variations in the human genome. Single-nucleotide polymorphism. J Hum Genet 47: 605–610

    Article  PubMed  CAS  Google Scholar 

  13. Suzuki A, Yamada R, Chang X, Tokuhiro S, Sawada T, Suzuki M, Nagasaki M, Nakayama-Hamada M, Kawaida R, Ono M et al (2003) Functional haplotypes of PADI4, encoding citrullinating enzyme peptidylarginine deiminase 4, are associated with rheumatoid arthritis. Nat Genet 34: 395–402

    Article  PubMed  CAS  Google Scholar 

  14. Tokuhiro S, Yamada R, Chang X, Suzuki A, Kochi Y, Sawada T, Suzuki M, Nagasaki M, Ohtsuki M, Ono M, Furukawa H et al (2003) An intronic SNP in a RUNX1 binding site of SLC22A4, encoding an organic cation transporter, is associated with rheumatoid arthritis. Nat Genet 35: 341–348

    Article  PubMed  CAS  Google Scholar 

  15. Sebastiani P, Lazarus R, Weiss ST, Kunkel LM, Kohane IS, Ramoni MF (2003) Minimal haplotype tagging. Proc Natl Acad Sci USA 100: 9900–9905

    Article  PubMed  CAS  Google Scholar 

  16. Barton A, Bowes J, Eyre S, Spreckley K, Hinks A, John S, Worthington J (2004) A functional haplotype of the PADI4 gene associated with rheumatoid arthritis in a Japanese population is not associated in a United Kingdom population. Arthritis Rheum 50:1117–1121

    Article  PubMed  CAS  Google Scholar 

  17. Yamada R, Suzuki A, Chang X, Yamamoto K (2003) Peptidylarginine deiminase type 4: identification of a rheumatoid arthritis-susceptible gene. Trends Mol Med 9: 503–508

    Article  PubMed  CAS  Google Scholar 

  18. Sondag-Tschroots IR, Aaij C, Smit JW, Feltkamp TE (1979) The antiperinuclear factor. 1. The diagnostic significance of the antiperinuclear factor for rheumatoid arthritis. Ann Rheum Dis 38: 248–251

    PubMed  CAS  Google Scholar 

  19. Young BJ, Mallya RK, Leslie RD, Clark CJ, Hamblin TJ (1979) Anti-keratin antibodies in rheumatoid arthritis. Br Med J 2: 97–99

    Article  PubMed  CAS  Google Scholar 

  20. Vincent C, de Keyser F, Masson-Bessiere C, Sebbag M, Veys EM, Serre G (1999) Antiperinuclear factor compared with the so called “antikeratin” antibodies and antibodies to human epidermis filaggrin, in the diagnosis of arthritides. Ann Rheum Dis 58: 42–48

    Article  PubMed  CAS  Google Scholar 

  21. Vincent C, Serre G, Lapeyre F, Fournie B, Ayrolles C, Fournie A, Soleilhavoup JP (1989) High diagnostic value in rheumatoid arthritis of antibodies to the stratum corneum of rat oesophagus epithelium, so-called ‘antikeratin antibodies’. Ann Rheum Dis 48:712–722

    Article  PubMed  CAS  Google Scholar 

  22. Despres N, Boire G, Lopez-Longo FJ, Menard HA (1994) The Sa system: a novel antigen-antibody system specific for rheumatoid arthritis. J Rheumatol 21: 1027–1033

    PubMed  CAS  Google Scholar 

  23. Simon M, Girbal E, Sebbag M, Gomes-Daudrix V, Vincent C, Salama G, Serre G (1993) The cytokeratin filament-aggregating protein filaggrin is the target of the so-called “antikeratin antibodies,” autoantibodies specific for rheumatoid arthritis. J Clin Invest 92: 1387–1393

    PubMed  CAS  Google Scholar 

  24. Girbal-Neuhauser E, Durieux JJ, Arnaud M, Dalbon P, Sebbag M, Vincent C, Simon M, Senshu T, Masson-Bessiere C, Jolivet-Reynaud C et al (1999) The epitopes targeted by the rheumatoid arthritis-associated antifilaggrin autoantibodies are posttranslationally generated on various sites of (pro)filaggrin by deimination of arginine residues. J Immunol 162: 585–594

    PubMed  CAS  Google Scholar 

  25. Schellekens GA, de Jong BA, van den Hoogen FH, van de Putte LB, van Venrooij WJ (1998) Citrulline is an essential constituent of antigenic determinants recognized by rheumatoid arthritis-specific autoantibodies. J Clin Invest 101: 273–281

    Article  PubMed  CAS  Google Scholar 

  26. Masson-Bessiere C, Sebbag M, Girbal-Neuhauser E, Nogueira L, Vincent C, Senshu T, Serre G (2001) The major synovial targets of the rheumatoid arthritis-specific antifilaggrin autoantibodies are deiminated forms of the alpha-and beta-chains of fibrin. J Immunol 166: 4177–4184

    PubMed  CAS  Google Scholar 

  27. Senshu T, Akiyama K, Kan S, Asaga H, Ishigami A, Manabe M (1995) Detection of deiminated proteins in rat skin: probing with a monospecific antibody after modification of citrulline residues. J Invest Dermatol 105: 163–169

    Article  PubMed  CAS  Google Scholar 

  28. Schellekens GA, Visser H, de Jong BA, van den Hoogen FH, Hazes JM, Breedveld FC, van Venrooij WJ (2000) The diagnostic properties of rheumatoid arthritis antibodies recognizing a cyclic citrullinated peptide. Arthritis Rheum 43: 155–163

    Article  PubMed  CAS  Google Scholar 

  29. Kroot EJ, de Jong BA, van Leeuwen MA, Swinkels H, van den Hoogen FH, van’t Hof M, van de Putte LB, van Rijswijk MH, van Venrooij WJ, van Riel PL (2000) The prognostic value of anti-cyclic citrullinated peptide antibody in patients with recent-onset rheumatoid arthritis. Arthritis Rheum 43: 1831–1835

    Article  PubMed  CAS  Google Scholar 

  30. Visser H, le Cessie S, Vos K, Breedveld FC, Hazes JM (2002) How to diagnose rheumatoid arthritis early: a prediction model for persistent (erosive) arthritis. Arthritis Rheum 46: 357–365

    Article  PubMed  Google Scholar 

  31. Meyer O, Labarre C, Dougados M, Goupille P, Cantagrel A, Dubois A, Nicaise-Roland P, Sibilia J, Combe B (2003) Anticitrullinated protein/peptide antibody assays in early rheumatoid arthritis for predicting five year radiographic damage. Ann Rheum Dis 62:120–126

    Article  PubMed  CAS  Google Scholar 

  32. Rantapaa-Dahlqvist S, de Jong BA, Berglin E, Hallmans G, Wadell G, Stenlund H, Sundin U, van Venrooij WJ (2003) Antibodies against cyclic citrullinated peptide and IgA rheumatoid factor predict the development of rheumatoid arthritis. Arthritis Rheum 48: 2741–2749

    Article  PubMed  CAS  Google Scholar 

  33. Yamada R, Suzuki A, Chang X, Yamamoto K (2005) Citrullinated proteins in rheumatoid arthritis. Frontiers in Bioscience 10: 54–60

    PubMed  CAS  Google Scholar 

  34. Quinn MA, Green MJ, Conaghan P, Emery P (2001) How do you diagnose rheumatoid arthritis early? Best Pract Res Clin Rheumatol 15: 49–66

    Article  PubMed  CAS  Google Scholar 

  35. Vossenaar ER, Zendman AJ, van Venrooij WJ, Pruijn GJ (2003) PAD, a growing family of citrullinating enzymes: genes, features and involvement in disease. Bioessays 25:1106–1118

    Article  PubMed  CAS  Google Scholar 

  36. Cuthbert GL, Daujat S, Snowden AW, Erdjument-Bromage H, Hagiwara T, Yamada M, Schneider R, Gregory PD, Tempst P, Bannister AJ, Kouzarides T (2004) Histone deimination antagonizes arginine methylation. Cell 118: 545–553

    Article  PubMed  CAS  Google Scholar 

  37. Wang Y, Wysocka J, Sayegh J, Lee YH, Perlin JR, Leonelli L, Sonbuchner LS, McDonald CH, Cook RG, Dou Y et al (2004) Human PAD4 regulates histone arginine methylation levels via demethylimination. Science 306: 279–283

    Article  PubMed  CAS  Google Scholar 

  38. van Stipdonk MJ, Willems AA, Amor S, Persoon-Deen C, Travers PJ, Boog CJ, van Noort JM (1998) T cells discriminate between differentially phosphorylated forms of alphaB-crystallin, a major central nervous system myelin antigen. Int Immunol 10:943–950

    Article  PubMed  Google Scholar 

  39. Rathmell JC, Thompson CB (1999) The central effectors of cell death in the immune system. Annu Rev Immunol 17: 781–828

    Article  PubMed  CAS  Google Scholar 

  40. Piacentini M, Colizzi V (1999) Tissue transglutaminase: apoptosis versus autoimmunity. Immunol Today 20: 130–134

    Article  PubMed  CAS  Google Scholar 

  41. Hershko A, Ciechanover A (1998) The ubiquitin system. Annu Rev Biochem 67:425–479

    Article  PubMed  CAS  Google Scholar 

  42. Ikari K, Kuwahara M, Nakamura T, Momohara S, Hara M, Yamanaka H, Tomatsu T, Kamatani N (2005) Association between PADI4 and rheumatoid arthritis: A replication study. Arthritis Rheum 52: 3054–3057

    Article  PubMed  CAS  Google Scholar 

  43. Vossenaar ER, Radstake TR, van der Heijden A, van Mansum MA, Dieteren C, de Rooij DJ, Barrera P, Zendman AJ, van Venrooij WJ (2004) Expression and activity of citrullinating peptidylarginine deiminase enzymes in monocytes and macrophages. Ann Rheum Dis 63: 373–381

    Article  PubMed  CAS  Google Scholar 

  44. Arita K, Hashimoto H, Shimizu T, Nakashima K, Yamada M, Sato M (2004) Structural basis for Ca2+-induced activation of human PAD4. Nat Struct Mol Biol 11: 777–783. Epub 2004 Jul 11

    Article  PubMed  CAS  Google Scholar 

  45. Wang Y, Wysocka J, Sayegh J, Lee YH, Perlin JR, Leonelli L, Sonbuchner LS, McDonald CH, Cook RG, Dou Y et al (2004) Human PAD4 regulates histone arginine methylation levels via demethylimination. Science 306: 279–283

    Article  PubMed  CAS  Google Scholar 

  46. Peltekova VD, Wintle RF, Rubin LA, Amos CI, Huang Q, Gu X, Newman B, Van Oene M, Cescon D, Greenberg G et al (2004) Functional variants of OCTN cation transporter genes are associated with Crohn disease. Nat Genet 36: 471–475. Epub 2004 Apr 11

    Article  PubMed  CAS  Google Scholar 

  47. Prokunina L, Castillejo-Lopez C, Oberg F, Gunnarsson I, Berg L, Magnusson V, Brookes AJ, Tentler D, Kristjansdottir H, Grondal G et al (2002) A regulatory polymorphism in PDCD1 is associated with susceptibility to systemic lupus erythematosus in humans. Nat Genet 32: 666–669

    Article  PubMed  CAS  Google Scholar 

  48. Helms C, Cao L, Krueger JG, Wijsman EM, Chamian F, Gordon D, Heffernan M, Daw JA, Robarge J, Ott J et al (2003) A putative RUNX1 binding site variant between SLC9A3R1 and NAT9 is associated with susceptibility to psoriasis. Nat Genet 35:349–356

    Article  PubMed  CAS  Google Scholar 

  49. Yamada R, Tokuhiro S, Chang X, Yamamoto K (2004) SLC22A4 and RUNX1: identification of RA susceptible genes. J Mol Med 82: 558–564

    PubMed  CAS  Google Scholar 

  50. Rioux JD, Silverberg MS, Daly MJ, Steinhart AH, McLeod RS, Griffiths AM, Green T, Brettin TS, Stone V, Bull SB et al (2000) Genomewide search in Canadian families with inflammatory bowel disease reveals two novel susceptibility loci. Am J Hum Genet 66:1863–1870

    Article  PubMed  CAS  Google Scholar 

  51. Yamazaki K, Takazoe M, Tanaka T, Ichimori T, Saito S, Iida A, Onouchi Y, Hata A, Nakamura Y (2004) Association analysis of SLC22A4, SLC22A5 and DLG5 in Japanese patients with Crohn disease. J Hum Genet 49: 664–668

    Article  PubMed  CAS  Google Scholar 

  52. Tamai I, Ohashi R, Nezu JI, Sai Y, Kobayashi D, Oku A, Shimane M, Tsuji A (2000) Molecular and functional characterization of organic cation/carnitine transporter family in mice. J Biol Chem 275: 40064–40072

    Article  PubMed  CAS  Google Scholar 

  53. Tamai I, China K, Sai Y, Kobayashi D, Nezu J, Kawahara E, Tsuji A (2001) Na(+)-coupled transport of L-carnitine via high-affinity carnitine transporter OCTN2 and its subcellular localization in kidney. Biochim Biophys Acta 1512: 273–284

    Article  PubMed  CAS  Google Scholar 

  54. Nezu J, Tamai I, Oku A, Ohashi R, Yabuuchi H, Hashimoto N, Nikaido H, Sai Y, Koizumi A, Shoji Y et al (1999) Primary systemic carnitine deficiency is caused by mutations in a gene encoding sodium ion-dependent carnitine transporter. Nat Genet 21:91–94

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Birkhäuser Verlag Basel/Switzerland

About this chapter

Cite this chapter

Yamada, R., Yamamoto, K. (2006). Gene-based large scale LD-mapping of rheumatoid arthritis-associated genes. In: Holmdahl, R. (eds) The Hereditary Basis of Rheumatic Diseases. Progress in Inflammation Research. Birkhäuser Basel. https://doi.org/10.1007/3-7643-7419-5_4

Download citation

  • DOI: https://doi.org/10.1007/3-7643-7419-5_4

  • Publisher Name: Birkhäuser Basel

  • Print ISBN: 978-3-7643-7201-9

  • Online ISBN: 978-3-7643-7419-8

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics