Subjugation of hypothalamic NPY and cohorts with central leptin gene therapy alleviates dyslipidemia, insulin resistance, and obesity for life-time

  • Satya P. Kalra
  • Pushpa S. Kalra
Part of the Experientia Supplementum book series (EXS, volume 95)

Summary

An interactive network comprised of neuropeptide Y (NPY) and cohorts is obligatory in the hypothalamic integration of appetite and energy expenditure on a minute-to-minute basis. High or low abundance of NPY and cognate receptors dysregulates the homeostatic milieu engendering hyperphagia, decreased energy expenditure, obesity and attendant metabolic syndrome cluster of dyslipidemia, glucose intolerance, insulin resistance and hyperinsulinemia, risk factors for type II diabetes and cardiovascular diseases. Increasing the supply of the endogenous repressor hormone leptin locally in the hypothalamus with the aid of leptin gene therapy, blocked age-related and dietary obesities, and the sequential development of dyslipidemia, hyperglycemia, and insulin resistance. Thus, sustained repression of NPY signaling with increased leptin selectively in the hypothalamus can avert environmental obesity and the risks of metabolic diseases.

Keywords

Metabolic Syndrome Diabetes Type White Adipose Tissue Familial Combine Hyperlipidemia Dietary Obesity 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Stein CJ, Colditz GA (2004) The epidemic of obesity. J Clin Endocrinol Metab 89: 2522–2525CrossRefPubMedGoogle Scholar
  2. 2.
    Slyper AH (2004) The pediatric obesity epidemic: causes and controversies. J Clin Endocrinol Metab 89: 2540–2547PubMedGoogle Scholar
  3. 3.
    Kalra SP, Kalra PS (2003) Keeping obesity and metabolic syndrome at bay with central leptin and cytokine gene therapy. In: I Hamilton (ed.): Current Medicinal Chemistry — Central Nervous System Agent. Bentham Science Publishers Ltd, San Francisco, CA, 189–199Google Scholar
  4. 4.
    Kalra SP, Kalra PS (2005) Gene transfer technology: a preventive neurotherapy to curb obesity, ameliorate metabolic syndrome and extend life-expectancy. Trends Pharmacol Sci 26: in pressGoogle Scholar
  5. 5.
    Grundy SM (2004) Obesity, metabolic syndrome, and cardiovascular disease. J Clin Endocrinol Metab 89: 2595–2600CrossRefPubMedGoogle Scholar
  6. 6.
    Carr MC, Brunzell JD (2004) Abdominal obesity and dyslipidemia in the metabolic syndrome: importance of type 2 diabetes and familial combined hyperlipidemia in coronary artery disease risk. J Clin Endocrinol Metab 89: 2601–2607CrossRefPubMedGoogle Scholar
  7. 7.
    Hill JO, Wyatt HR, Reed GW, Peters JC (2003) Obesity and the environment: where do we go from here? Science 299: 853–855CrossRefPubMedGoogle Scholar
  8. 8.
    Calle EE, Rodriguez C, Walker-Thurmond K, Thun MJ (2003) Overweight, obesity, and mortality from cancer in a prospectively studied cohort of US adults. N Engl J Med 348: 1625–1638CrossRefPubMedGoogle Scholar
  9. 9.
    Lazarov O, Robinson J, Tang YP, Hairston IS, Korade-Mirnics Z, Lee VM, Hersh LB, Sapolsky RM, Mirnics K, Sisodia SS (2005) Environmental enrichment reduces Abeta levels and amyloid deposition in transgenic mice. Cell 120: 701–713CrossRefPubMedGoogle Scholar
  10. 10.
    Loureiro ML (2004) Obesity: Economic Dimensions of a “Super Size” Problem. Choices 35–39Google Scholar
  11. 11.
    Olshansky SJ, Passaro DJ, Hershow RC, Layden J, Carnes BA, Brody J, Hayflick L, Butler RN, Allison DB, Ludwig DS (2005) A potential decline in life expectancy in the United States in the 21st century. N Engl J Med 352: 1138–1145CrossRefPubMedGoogle Scholar
  12. 12.
    Kalra SP, Dube MG, Pu S, Xu B, Horvath TL, Kalra PS (1999) Interacting appetite-regulating pathways in the hypothalamic regulation of body weight. Endocr Rev 20: 68–100CrossRefPubMedGoogle Scholar
  13. 13.
    Dhillon H, Ge Y, Minter RM, Prima V, Moldawer LL, Muzyczka N, Zolotukhin S, Kalra PS, Kalra SP (2000) Long-term differential modulation of genes encoding orexigenic and anorexigenic peptides by leptin delivered by rAAV vector in ob/ob mice. Relationship with body weight change. Regul Pept 92: 97–105CrossRefPubMedGoogle Scholar
  14. 14.
    Horvath TL, Diano S, Tschop M (2004) Brain circuits regulating energy homeostasis. Neuroscientist 10: 235–246CrossRefPubMedGoogle Scholar
  15. 15.
    Kalra SP, Bagnasco M, Otukonyong EE, Dube MG, Kalra PS (2003) Rhythmic, reciprocal ghrelin and leptin signaling: new insight in the development of obesity. Regul Pept 111: 1–11CrossRefPubMedGoogle Scholar
  16. 16.
    Kalra SP, Kalra PS (2004) NPY and cohorts in regulating appetite, obesity and metabolic syndrome: Beneficial effects of gene therapy. Neuropeptides 38: 201–211CrossRefPubMedGoogle Scholar
  17. 17.
    Kalra SP, Kalra PS (2004) NPY — an endearing journey in search of a neurochemical on/off switch for appetite, sex and reproduction. Peptides 25: 465–471CrossRefPubMedGoogle Scholar
  18. 18.
    Kalra SP, Kalra PS (2004) NPY: A Novel on/off switch for control of appetite and reproduction. In: MC Michel (ed.): Neuropeptide Y and Related Peptides. Springer-Verlag, Berlin, 221–249Google Scholar
  19. 19.
    Kalra SP, Kalra PS (2003) Neuropeptide Y: a physiological orexigen modulated by the feedback action of ghrelin and leptin. Endocrine 22: 49–55CrossRefPubMedGoogle Scholar
  20. 20.
    Kalra PS, Kalra SP (2002) Obesity and Metabolic Syndrome: Long-term benefits of central leptin gene therapy. In: JR Prous (ed.): Drugs of Today. Prous Science, Barcelona, Spain, 745–757Google Scholar
  21. 21.
    Kershaw EE, Flier JS (2004) Adipose tissue as an endocrine organ. J Clin Endocrinol Metab 89: 2548–2556CrossRefPubMedGoogle Scholar
  22. 22.
    Unger RH (2002) Lipotoxic diseases. Annu Rev Med 53: 319–336CrossRefPubMedGoogle Scholar
  23. 23.
    Morash B, Li A, Murphy PR, Wilkinson M, Ur E (1999) Leptin gene expression in the brain and pituitary gland. Endocrinology 140: 5995–5998CrossRefPubMedGoogle Scholar
  24. 24.
    Pu S, Kalra PS, Kalra SP (1998) Diurnal rhythm in cyclic GMP/nitric oxide efflux in the medial preoptic area of male rats. Brain Res 808: 310–312CrossRefPubMedGoogle Scholar
  25. 25.
    Bagnasco M, Kalra PS, Kalra SP (2002) Plasma leptin levels are pulsatile in adult rats: effects of gonadectomy. Neuroendocrinology 75: 257–263CrossRefPubMedGoogle Scholar
  26. 26.
    Bagnasco M, Kalra PS, Kalra SP (2002) Ghrelin and leptin pulse discharge in fed and fasted rats. Endocrinology 143: 726–729PubMedGoogle Scholar
  27. 27.
    Otukonyong EE, Dube MG, Torto R, Kalra PS, Kalra SP (2005) High fat diet-induced ultradian leptin and insulin hypersecretion and ghrelin is absent in obesity-resistant rats. Obesity Research 13: 991–999PubMedGoogle Scholar
  28. 28.
    Otukonyong EE, Dube MG, Torto R, Kalra PS, Kalra SP (2005) Central leptin differentially modulates ultradian secretory patterns of insulin, leptin and ghrelin independent of effects on food intake and body weight. Peptides 26, in pressGoogle Scholar
  29. 29.
    Kalra SP, Dube MG, Sahu A, Phelps CP, Kalra PS (1991) Neuropeptide Y secretion increases in the paraventricular nucleus in association with increased appetite for food. Proc Natl Acad Sci USA 88: 10931–10935PubMedGoogle Scholar
  30. 30.
    Cohen P, Zhao C, Cai X, Montez JM, Rohani SC, Feinstein P, Mombaerts P, Friedman JM (2001) Selective deletion of leptin receptor in neurons leads to obesity. J Clin Invest 108: 1113–1121CrossRefPubMedGoogle Scholar
  31. 31.
    Montague CT, Farooqi IS, Whitehead JP, Soos MA, Rau H, Wareham NJ, Sewter CP, Digby JE, Mohammed SN, Hurst JA et al. (1997) Congenital leptin deficiency is associated with severe early-onset obesity in humans. Nature 387: 903–908PubMedGoogle Scholar
  32. 32.
    Kalra PS, Dube MG, Xu B, Kalra SP (1997) Increased receptor sensitivity to neuropeptide Y in the hypothalamus may underlie transient hyperphagia and body weight gain. Regul Pept 72: 121–130CrossRefPubMedGoogle Scholar
  33. 33.
    Kalra PS, Dube MG, Xu B, Farmerie WG, Kalra SP (1998) Neuropeptide Y (NPY) Y1 receptor mRNA is upregulated in association with transient hyperphagia and body weight gain: evidence for a hypothalamic site for concurrent development of leptin resistance. J Neuroendocrinol 10: 43–49CrossRefPubMedGoogle Scholar
  34. 34.
    Ueno N, Dube MG, Inui A, Kalra PS, Kalra SP (2004) Leptin modulates orexigenic effects of ghrelin and attenuates adiponectin and insulin levels and selectively the dark-phase feeding as revealed by central leptin gene therapy. Endocrinology 145: 4176–4184CrossRefPubMedGoogle Scholar
  35. 35.
    Kalra SP, Ueno N, Kalra PS (2005) Stimulation of appetite by ghrelin is regulated by leptin restraint: peripheral and central sites of action. J Nutr 135: 1331–1335PubMedGoogle Scholar
  36. 36.
    Dhillon H, Kalra SP, Kalra PS (2001) Dose-dependent effects of central leptin gene therapy on genes that regulate body weight and appetite in the hypothalamus. Mol Ther 4: 139–145CrossRefPubMedGoogle Scholar
  37. 37.
    Billington CJ, Briggs JE, Grace M, Levine AS. (1991) Effects of intracerebroventricular injection of neuropeptide Y on energy metabolism. Am J Physiol 260: R321–R327PubMedGoogle Scholar
  38. 38.
    Bagnasco M, Dube MG, Kalra PS, Kalra SP (2002) Evidence for the existence of distinct central appetite and energy expenditure pathways and stimulation of ghrelin as revealed by hypothalamic site-specific leptin gene therapy. Endocrinology 143: 4409–4421PubMedGoogle Scholar
  39. 39.
    Bowers RR, Festuccia WT, Song CK, Shi H, Migliorini RH, Bartness TJ (2004) Sympathetic innervation of white adipose tissue and its regulation of fat cell number. Am J Physiol Regul Integr Comp Physiol 286: R1167–1175PubMedGoogle Scholar
  40. 40.
    Chen XM, Hosono T, Yoda T, Fukuda Y, Kanosue K (1998) Efferent projection from the preoptic area for the control of non-shivering thermogenesis in rats. J Physiol 512: 883–892CrossRefPubMedGoogle Scholar
  41. 41.
    Hermens WT, Verhaagen J (1998) Viral vectors, tools for gene transfer in the nervous system. Prog Neurobiol 55: 399–432CrossRefPubMedGoogle Scholar
  42. 42.
    Carter BJ, Burstein H (2004) Adeno-associated virus and AAV vectors for gene delivery. In: N Templeton-Smith (ed.): Theruapeutics Mechanisms and Strategies. Marcel Dekker, New York, NY, 71–1011Google Scholar
  43. 43.
    Dhillon H, Kalra SP, Prima V, Zolotukhin S, Scarpace PJ, Moldawer LL, Muzyczka N, Kalra PS (2001) Central leptin gene therapy suppresses body weight gain, adiposity and serum insulin without affecting food consumption in normal rats: A long-term study. Regul Pept 99: 69–77CrossRefPubMedGoogle Scholar
  44. 44.
    Beretta E, Dube MG, Kalra PS, Kalra SP (2002) Long-term suppression of weight gain, adiposity, and serum insulin by central leptin gene therapy in prepubertal rats: Effects on serum ghrelin and appetite-regulating genes. Ped Res 52: 189–198Google Scholar
  45. 45.
    Boghossian S, Lecklin AH, Torto R, Kalra PS, Kalra SP (2005) Suppression of fat deposition for the life time of rodents with gene therapy. Peptides 26: 1512–1519CrossRefPubMedGoogle Scholar
  46. 46.
    Lecklin AH, Dube MG, Torto R, Kalra PS, Kalra SP (2005) Perigestational suppression of weight gain with central leptin gene therapy results in lower weight F1 generation. Peptides 26: 1176–1187CrossRefPubMedGoogle Scholar
  47. 47.
    Beretta E, Dube MG, Kalra PS, Kalra SP (2002) Central LIF gene therapy suppresses food intake, body weight, serum leptin and insulin for extended periods. Peptides 23: 875–984CrossRefGoogle Scholar
  48. 48.
    Kalra SP (2001) Circumventing leptin resistance for weight control. Proc Natl Acad Sci USA 98: 4279–4281CrossRefPubMedGoogle Scholar
  49. 49.
    Kalra SP, Kalra PS (2001) Viral vectors as probes to decipher brain circuitry for weight control. Trends Endocrinol Metab 12: 377–378PubMedGoogle Scholar
  50. 50.
    Dube MG, Beretta E, Dhillon H, Ueno N, Kalra PS, Kalra SP (2002) Central leptin gene therapy blocks high fat diet-induced weight gain, hyperleptinemia and hyperinsulinemia: effects on serum ghrelin levels. Diabetes 51: 1729–1736PubMedGoogle Scholar
  51. 51.
    Ueno N, Dube MG, Kalra PS, Kalra SP (2002) Central leptin gene therapy increases insulin sensitivity and suppresses weight without affecting food intake. Annual Society for Neuroscience, October 23–27, Abs #573.9, pp 781Google Scholar
  52. 52.
    Kalra SP, Ueno N, Boghossian S, Kalra PS (2004) Leptin transgene expression in the hypothalamus reduces mortality and increases lifespan. Annual Society for Neuroscience, October 23–27, pp M–103, Abs #565.15Google Scholar

Copyright information

© Birkhäuser Verlag/Switzerland 2006

Authors and Affiliations

  • Satya P. Kalra
    • 1
  • Pushpa S. Kalra
    • 1
  1. 1.Department of NeuroscienceUniversity of Florida McKnight Brain InstituteGainesvilleUSA

Personalised recommendations