Skip to main content

Signalling cascades that modulate the activity of sodium channels in sensory neurons

  • Chapter
Sodium Channels, Pain, and Analgesia

Part of the book series: Progress in Inflammation Research ((PIR))

  • 755 Accesses

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Black JA, Liu S, Tanaka M, Cummins TR, Waxman SG (2004) Changes in the expression of tetrodotoxin-sensitive sodium channels within dorsal root ganglia neurons in inflammatory pain. Pain 108: 237–247

    Article  PubMed  CAS  Google Scholar 

  2. Coggeshall RE, Tate S, Carlton SM (2004) Differential expression of tetrodotoxin-resistant sodium channels NaV1.8 and NaV1.9 in normal and inflamed rats. Neurosci Lett 355: 45–48

    Article  PubMed  CAS  Google Scholar 

  3. Gold MS (1999) Tetrodotoxin-resistant Na+ currents and inflammatory hyperalgesia. Proc Natl Acad Sci USA 96: 7645–7649

    Article  PubMed  CAS  Google Scholar 

  4. Lai J, Hunter JC, Porreca F (2003) The role of voltage-gated sodium channels in neuropathic pain. Curr Opin Neurobiol 13: 291–297

    Article  PubMed  CAS  Google Scholar 

  5. Lai J, Porreca F, Hunter JC, Gold MS (2004) Voltage-gated sodium channels and hyperalgesia. Annu Rev Pharmacol Toxicol 44: 371–397

    Article  PubMed  CAS  Google Scholar 

  6. Novakovic SD, Tzoumaka E, McGivern JG, Haraguchi M, Sangameswaran L, Gogas KR, Eglen RM, Hunter JC (1998) Distribution of the tetrodotoxin-resistant sodium channel PN3 in rat sensory neurons in normal and neuropathic conditions. J Neurosci 18: 2174–2187

    PubMed  CAS  Google Scholar 

  7. Okuse K, Chaplan SR, McMahon SB, Luo ZD, Calcutt NA, Scott BP, Akopian AN, Wood JN (1997) Regulation of expression of the sensory neuron-specific sodium channel SNS in inflammatory and neuropathic pain. Mol Cell Neurosci 10: 196–207

    Article  PubMed  CAS  Google Scholar 

  8. Porreca F, Lai J, Bian D, Wegert S, Ossipov MH, Eglen RM, Kassotakis L, Novakovic S, Rabert DK, Sangameswaran L et al (1999) A comparison of the potential role of the tetrodotoxin-insensitive sodium channels, PN3/SNS and NaN/SNS2, in rat models of chronic pain. Proc Natl Acad Sci USA 96: 7640–7644

    Article  PubMed  CAS  Google Scholar 

  9. Waxman SG, Dib-Hajj S, Cummins TR, Black JA (1999) Sodium channels and pain. Proc Natl Acad Sci USA 96: 7635–7639

    Article  PubMed  CAS  Google Scholar 

  10. Ferreira SH, Nakamura M (1979) I-Prostaglandin hyperalgesia, a cAMP/Ca2+ dependent process. Prostaglandins 18: 179–190

    PubMed  CAS  Google Scholar 

  11. Taiwo YO, Bjerknes LK, Goetzl EJ, Levine JD (1989) Mediation of primary afferent peripheral hyperalgesia by the cAMP second messenger system. Neuroscience 32: 577–580

    Article  PubMed  CAS  Google Scholar 

  12. Gold MS, Reichling DB, Shuster MJ, Levine JD (1996) Hyperalgesic agents increase a tetrodotoxin-resistant Na+ current in nociceptors. Proc Natl Acad Sci USA 93: 1108–1112

    Article  PubMed  CAS  Google Scholar 

  13. England S, Bevan S, Docherty RJ (1996) PGE2 modulates the tetrodotoxin-resistant sodium current in neonatal rat dorsal root ganglion neurones via the cyclic AMP-protein kinase A cascade. J Physiol 495: 429–440

    PubMed  CAS  Google Scholar 

  14. Gold MS, Levine JD, Correa AM (1998) Modulation of TTX-R INa by PKC and PKA and their role in PGE2-induced sensitization of rat sensory neurons in vitro. J Neurosci 18: 10345–10355

    PubMed  CAS  Google Scholar 

  15. Fitzgerald EM, Okuse K, Wood JN, Dolphin AC, Moss SJ (1999) cAMP-dependent phosphorylation of the tetrodotoxin-resistant voltage-dependent sodium channel SNS. J Physiol 516: 433–446

    Article  PubMed  CAS  Google Scholar 

  16. Moskowitz MA (1993) Neurogenic inflammation in the pathophysiology and treatment of migraine. Neurology 43(Suppl 3): S16–20

    PubMed  CAS  Google Scholar 

  17. Mossner R, Lesch KP (1998) Role of serotonin in the immune system and in neuroimmune interactions. Brain Behav Immun 12: 249–271

    Article  PubMed  CAS  Google Scholar 

  18. Owen DA (1987) Inflammation — histamine and 5-hydroxytryptamine. Br Med Bull 43: 256–269

    PubMed  CAS  Google Scholar 

  19. Ryan GB, Majno G (1977) Acute inflammation. ???A review. Am J Pathol 86: 183–276

    PubMed  CAS  Google Scholar 

  20. Herbert MK, Schmidt RF (1992) Activation of normal and inflamed fine articular afferent units by serotonin. Pain 50: 79–88

    Article  PubMed  CAS  Google Scholar 

  21. Mense S (1981) Sensitization of group IV muscle receptors to bradykinin by 5-hydroxytryptamine and prostaglandin E2. Brain Res 225: 95–105

    Article  PubMed  CAS  Google Scholar 

  22. Treede RD, Meyer RA, Raja SN, Campbell JN (1992) Peripheral and central mechanisms of cutaneous hyperalgesia. Prog Neurobiol 38: 397–421

    Article  PubMed  CAS  Google Scholar 

  23. Taiwo YO, Heller PH, Levine JD (1992) Mediation of serotonin hyperalgesia by the cAMP second messenger system. Neuroscience 48: 479–483

    PubMed  CAS  Google Scholar 

  24. Taiwo YO, Levine JD (1992) Serotonin is a directly-acting hyperalgesic agent in the rat. Neuroscience 48: 485–490

    PubMed  CAS  Google Scholar 

  25. Cardenas CG, Del Mar LP, Cooper BY, Scroggs RS (1997) 5HT4 receptors couple positively to tetrodotoxin-insensitive sodium channels in a subpopulation of capsaicin-sensitive rat sensory neurons. J Neurosci 17: 7181–7189

    PubMed  CAS  Google Scholar 

  26. Cardenas CG, Del Mar LP, Scroggs RS (1995) Variation in serotonergic inhibition of calcium channel currents in four types of rat sensory neurons differentiated by membrane properties. J Neurophysiol 74: 1870–1879

    PubMed  CAS  Google Scholar 

  27. Cardenas LM, Cardenas CG, Scroggs RS (2001) 5HT increases excitability of nociceptor-like rat dorsal root ganglion neurons via cAMP-coupled TTX-resistant Na(+) channels. J Neurophysiol 86: 241–248

    PubMed  CAS  Google Scholar 

  28. d”Alcantara P, Cardenas LM, Swillens S, Scroggs RS (2002) Reduced transition between open and inactivated channel states underlies 5HT increased I(Na+) in rat nociceptors. Biophys J 83: 5–21

    Google Scholar 

  29. Dray A, Bettaney J, Forster P, Perkins MN (1988) Bradykinin-induced stimulation of afferent fibres is mediated through protein kinase C. Neurosci Lett 91: 301–307

    Article  PubMed  CAS  Google Scholar 

  30. Rang HP, Ritchie JM (1988) Depolarization of nonmyelinated fibers of the rat vagus nerve produced by activation of protein kinase C. J Neurosci 8: 2606–2617

    PubMed  CAS  Google Scholar 

  31. Burgess GM, Mullaney I, McNeill M, Dunn PM, Rang HP (1989) Second messengers involved in the mechanism of action of bradykinin in sensory neurons in culture. J Neurosci 9: 3314–3325

    PubMed  CAS  Google Scholar 

  32. Schepelmann K, Messlinger K, Schmidt RF (1993) The effects of phorbol ester on slowly conducting afferents of the cat’s knee joint. Exp Brain Res 92: 391–398

    Article  PubMed  CAS  Google Scholar 

  33. Barber LA, Vasko MR (1996) Activation of protein kinase C augments peptide release from rat sensory neurons. J Neurochem 67: 72–80

    PubMed  CAS  Google Scholar 

  34. Kamp TJ, Hell JW (2000) Regulation of cardiac L-type calcium channels by protein kinase A and protein kinase C. Circ Res 87: 1095–1102

    PubMed  CAS  Google Scholar 

  35. MacDonald JF, Kotecha SA, Lu WY, Jackson MF (2001) Convergence of PKC-dependent kinase signal cascades on NMDA receptors. Curr Drug Targets 2: 299–312

    Article  PubMed  CAS  Google Scholar 

  36. Shearman MS, Sekiguchi K, Nishizuka Y (1989) Modulation of ion channel activity: a key function of the protein kinase C enzyme family. Pharmacol Rev 41: 211–237

    PubMed  CAS  Google Scholar 

  37. Swope SL, Moss SJ, Raymond LA, Huganir RL (1999) Regulation of ligand-gated ion channels by protein phosphorylation. Adv Second Messenger Phosphoprotein Res 33: 49–78

    PubMed  CAS  Google Scholar 

  38. Dumont JE, Pecasse F, Maenhaut C (2001) Crosstalk and specificity in signalling. Are we crosstalking ourselves into general confusion? Cell Signal 13: 457–463

    Article  PubMed  CAS  Google Scholar 

  39. Dzimiri N (2002) Receptor crosstalk. Implications for cardiovascular function, disease and therapy. Eur J Biochem 269: 4713–4730

    Article  PubMed  CAS  Google Scholar 

  40. Houslay MD (1995) Compartmentalization of cyclic AMP phosphodiesterases, signalling ‘crosstalk’, desensitization and the phosphorylation of Gi-2 add cell specific personalization to the control of the levels of the second messenger cyclic AMP. Adv Enzyme Regul 35: 303–338

    PubMed  CAS  Google Scholar 

  41. Matozaki T, Nakanishi H, Takai Y (2000) Small G-protein networks: their crosstalk and signal cascades. Cell Signal 12: 515–524

    Article  PubMed  CAS  Google Scholar 

  42. Cantrell AR, Catterall WA (2001) Neuromodulation of Na+ channels: an unexpected form of cellular plasticity. Nat Rev Neurosci 2: 397–407

    Article  PubMed  CAS  Google Scholar 

  43. Khasar SG, McCarter G, Levine JD (1999) Epinephrine produces a beta-adrenergic receptor-mediated mechanical hyperalgesia and in vitro sensitization of rat nociceptors. J Neurophysiol 81: 1104–1112

    PubMed  CAS  Google Scholar 

  44. Ferreira SH, Romitelli M, de Nucci G (1989) Endothelin-1 participation in overt and inflammatory pain. J Cardiovasc Pharmacol (Suppl) 5: S220–S222

    Google Scholar 

  45. Aramori I, Nakanishi S (1992) Coupling of two endothelin receptor subtypes to differing signal transduction in transfected Chinese hamster ovary cells. J Biol Chem 267: 12468–12474

    PubMed  CAS  Google Scholar 

  46. Douglas SA, Ohlstein EH (1997) Signal transduction mechanisms mediating the vascular actions of endothelin. J Vasc Res 34: 152–164

    Article  PubMed  CAS  Google Scholar 

  47. Jiang T, Pak E, Zhang HL, Kline RP, Steinberg SF (1996) Endothelin-dependent actions in cultured AT-1 cardiac myocytes. The role of the epsilon isoform of protein kinase C. Circ Res 78: 724–736

    PubMed  CAS  Google Scholar 

  48. Kasuya Y, Abe Y, Hama H, Sakurai T, Asada S, Masaki T, Goto K (1994) Endothelin-1 activates mitogen-activated protein kinases through two independent signalling pathways in rat astrocytes. Biochem Biophys Res Commun 204: 1325–1333

    Article  PubMed  CAS  Google Scholar 

  49. Zhou Z, Davar G, Strichartz G (2002) Endothelin-1 (ET-1) selectively enhances the activation gating of slowly inactivating tetrodotoxin-resistant sodium currents in rat sensory neurons: a mechanism for the pain-inducing actions of ET-1. J Neurosci 22: 6325–6330

    PubMed  CAS  Google Scholar 

  50. Weskamp G, Otten U (1987) An enzyme-linked immunoassay for nerve growth factor (NGF): a tool for studying regulatory mechanisms involved in NGF production in brain and in peripheral tissues. J Neurochem 48: 1779–1786

    PubMed  CAS  Google Scholar 

  51. Lewin GR, Ritter AM, Mendell LM (1993) Nerve growth factor-induced hyperalgesia in the neonatal and adult rat. J Neurosci 13: 2136–2148

    PubMed  CAS  Google Scholar 

  52. Rueff A, Mendell LM (1996) Nerve growth factor and NT-5 induce increased thermal sensitivity of cutaneous nociceptors in vitro. J Neurophysiol 76: 3593–3596

    PubMed  CAS  Google Scholar 

  53. Aguayo LG, White G (1992) Effects of nerve growth factor on TTX-and capsaicin-sensitivity in adult rat sensory neurons. Brain Res 570: 61–67

    Article  PubMed  CAS  Google Scholar 

  54. Garber SS, Hoshi T, Aldrich RW (1989) Regulation of ionic currents in pheochromocytoma cells by nerve growth factor and dexamethasone. J Neurosci 9: 3976–3987

    PubMed  CAS  Google Scholar 

  55. Mandel G, Cooperman SS, Maue RA, Goodman RH, Brehm P (1988) Selective induction of brain type II Na+ channels by nerve growth factor. Proc Natl Acad Sci USA 85: 924–928

    PubMed  CAS  Google Scholar 

  56. Omri G, Meiri H (1990) Characterization of sodium currents in mammalian sensory neurons cultured in serum-free defined medium with and without nerve growth factor. J Membr Biol 115: 13–29

    PubMed  CAS  Google Scholar 

  57. Rudy B, Kirschenbaum B, Greene LA (1982) Nerve growth factor-induced increase in saxitoxin binding to rat PC12 pheochromocytoma cells. J Neurosci 2: 1405–1411

    PubMed  CAS  Google Scholar 

  58. Zhang YH, Vasko MR, Nicol GD (2002) Ceramide, a putative second messenger for nerve growth factor, modulates the TTX-resistant Na(+) current and delayed rectifier K(+) current in rat sensory neurons. J Physiol 544: 385–402

    Article  PubMed  CAS  Google Scholar 

  59. Dobrowsky RT, Carter BD (1998) Coupling of the p75 neurotrophin receptor to sphingolipid signaling. Ann NY Acad Sci 845: 32–45

    PubMed  CAS  Google Scholar 

  60. Dobrowsky RT, Werner MH, Castellino AM, Chao MV, Hannun YA (1994) Activation of the sphingomyelin cycle through the low-affinity neurotrophin receptor. Science 265: 1596–1599

    PubMed  CAS  Google Scholar 

  61. Liu B, Andrieu-Abadie N, Levade T, Zhang P, Obeid LM, Hannun YA (1998) Glutathione regulation of neutral sphingomyelinase in tumor necrosis factor-alpha-induced cell death. J Biol Chem 273: 11313–11320

    PubMed  CAS  Google Scholar 

  62. Liu B, Hannun YA (1997) Inhibition of the neutral magnesium-dependent sphingomyelinase by glutathione. J Biol Chem 272: 16281–16287

    PubMed  CAS  Google Scholar 

  63. Hilborn MD, Vaillancourt RR, Rane SG (1998) Growth factor receptor tyrosine kinases acutely regulate neuronal sodium channels through the src signaling pathway. J Neurosci 18: 590–600

    PubMed  CAS  Google Scholar 

  64. Levitan IB (1999) It is calmodulin after all! Mediator of the calcium modulation of multiple ion channels. Neuron 22: 645–648

    Article  PubMed  CAS  Google Scholar 

  65. Saimi Y, Kung C (2002) Calmodulin as an ion channel subunit. Annu Rev Physiol 64: 289–311

    Article  PubMed  CAS  Google Scholar 

  66. Trudeau MC, Zagotta WN (2003) Calcium/calmodulin modulation of olfactory and rod cyclic nucleotide-gated ion channels. J Biol Chem 278: 18705–18708

    Article  PubMed  CAS  Google Scholar 

  67. Wen H, Levitan IB (2002) Calmodulin is an auxiliary subunit of KCNQ2/3 potassium channels. J Neurosci 22: 7991–8001

    PubMed  CAS  Google Scholar 

  68. Zamponi GW (2003) Calmodulin lobotomized: novel insights into calcium regulation of voltage-gated calcium channels. Neuron 39: 879–881

    Article  PubMed  Google Scholar 

  69. Herzog RI, Liu C, Waxman SG, Cummins TR (2003) Calmodulin binds to the C terminus of sodium channels NaV1.4 and NaV1.6 and differentially modulates their functional properties. J Neurosci 23: 8261–8270

    PubMed  CAS  Google Scholar 

  70. Yang D, Gereau RW 4th (2002) Peripheral group II metabotropic glutamate receptors (mGluR2/3) regulate prostaglandin E2-mediated sensitization of capsaicin responses and thermal nociception. J Neurosci 22: 6388–6393

    PubMed  CAS  Google Scholar 

  71. Yang D, Gereau RW 4th (2004) Group II metabotropic glutamate receptors inhibit cAMP-dependent protein kinase-mediated enhancement of tetrodotoxin-resistant sodium currents in mouse dorsal root ganglion neurons. Neurosci Lett 357: 159–162

    PubMed  CAS  Google Scholar 

  72. Vijayaragavan K, Boutjdir M, Chahine M (2004) Modulation of NaV1.7 and NaV1.8 peripheral nerve sodium channels by protein kinase A and protein kinase C. J Neurophysiol 91: 1556–1569

    PubMed  CAS  Google Scholar 

  73. Rizzo MA, Kocsis JD, Waxman SG (1994) Slow sodium conductances of dorsal root ganglion neurons: intraneuronal homogeneity and interneuronal heterogeneity. J Neurophysiol 72: 2796–2815

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Birkhäuser Verlag Basel/Switzerland

About this chapter

Cite this chapter

Nicol, G.D. (2005). Signalling cascades that modulate the activity of sodium channels in sensory neurons. In: Parnham, M.J., Coward, K., Baker, M.D. (eds) Sodium Channels, Pain, and Analgesia. Progress in Inflammation Research. Birkhäuser Basel. https://doi.org/10.1007/3-7643-7411-X_6

Download citation

  • DOI: https://doi.org/10.1007/3-7643-7411-X_6

  • Publisher Name: Birkhäuser Basel

  • Print ISBN: 978-3-7643-7062-6

  • Online ISBN: 978-3-7643-7411-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics