Skip to main content

Pharmacological properties of nimesulide

  • Chapter

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Swingle KF, Moore GGI (1984) Preclinical pharmacological studies with nimesulide. Drugs Exptl Clin Res 10: 587–597

    CAS  Google Scholar 

  2. Davis R, Brogden RN (1994) Nimesulide. An update of its pharmacodynamic and pharmacokinetic properties, and therapeutic efficacy. Drugs 48: 431–454

    Article  PubMed  CAS  Google Scholar 

  3. Famaey JP (1997) Review. In vitro and in vivo pharmacological evidence of selective cyclooxygenase-2 inhibition by nimesulide: An overview. Inflamm Res 46: 437–446

    Article  PubMed  CAS  Google Scholar 

  4. Bennett A, Villa G (2000) Nimesulide: an NSAID that preferentially inhibits COX-2, and has various unique pharmacological actions. Exp Opin Pharmacother 1: 277–286

    Article  CAS  Google Scholar 

  5. Singla AG, Chawia AM, Sing A (2000) Review. Nimesulide: some pharmaceutical and pharmacological aspects — an update. J Pharm Pharmacol 52: 467–486

    Article  PubMed  CAS  Google Scholar 

  6. Bennett A (2001) Nimesulide: a well-established cyclooxygenase-2 inhibitor with many other pharmacological properties relevant to inflammatory diseases. In: Vane JR, Botting RM (Eds): Therapeutic Role of Selective COX-2 inhibitors. William Harvey Press, London. 521–540

    Google Scholar 

  7. Bennett A (2001) Clinical importance of the multifactorial actions of nimesulide. Drugs of Today (Suppl B) 37: 9–14

    CAS  Google Scholar 

  8. Rainsford KD (2004) Pharmacology and toxicology of COX-2 inhibitors. In: Pairet M, van Ryn J (Eds): COX-2 Inhibitors. 66–131, Birkhäuser, Basel

    Google Scholar 

  9. Swingle KF, Moore GGI, Grant TJ (1976) 4-Nitro-2-phenoxymethanesulfnanilide (R-805): a chemically novel anti-inflammatory agent. Archiv Int Pharmacodyn 221: 132–139

    CAS  Google Scholar 

  10. Rainsford KD (1999) Pharmacology and toxicology of ibuprofen. In: KD Rainsford (Ed): Ibuprofen. A Critical Bibliographic review. Taylor & Francis, London

    Google Scholar 

  11. Tanaka K, Shimotori T, Makino S, Aikawa Y, Inaba T, Yoshida C, Tanako S (1992) Pharmacological studies of the new anti-inflammatory agent 3-formylamino-7-methyl-sulfonylamino-6-phenoxy-4H-1-benzopyran-4-one. 1st Communication: Antiinflammatory, analgesic and other related properties. Arzneim-Forsch, 42: 935–944

    CAS  Google Scholar 

  12. Qui J, Chen B-J, Zhang J-F (1993) Studies on pharmacodynamics of domestic nimesulide. Chinese Pharmacol Bull 9: 468–471 (Chinese)

    Google Scholar 

  13. Omata Y, Itokazu Y, Tsuzuike N, Inoue N, Segawa H, Tamaki H (1997) Zaltoprofen, a nonsteroidal anti-inflammatory drug, selectively inhibits prostaglandin G/H synthase/ cyclooxygenase-2 (COX-2) activity in vitro. Yakuri to Chiryo 15: 2131–2136 (Japanese)

    Google Scholar 

  14. Scaglione F, Rossoni G (1998) Comparative anti-inflammatory effects of roxithromycin, azithromycin and clarithromycin. J Antimicrob Chemotherap 41(Suppl B): 47–50

    Article  CAS  Google Scholar 

  15. Gupta SK, Bhardwaj RK, Tyagi P, Sengupta S, Velpandian T (1999) Anti-inflammatory activity and pharmacokinetic profile of a new parenteral formulation of nimesulide. Pharmacol Res 39: 137–141

    Article  PubMed  CAS  Google Scholar 

  16. Gupta SK, Prakash J, Awaor L, Joshi S, Velpandian T, Sengupta S (1996) Anti-inflammatory activity of topical nimesulide gel in various experimental models. Inflamm Res 45: 590–592

    Article  PubMed  CAS  Google Scholar 

  17. Nakatsugi S, Terada N, Yoshimura T, Horie Y, Furukawa M (1996) Effects of nimesulide, a preferential cyclooxygenase-2 inhibitor, an carrageenan-induced pleurisy and stress-induced gastric lesions in rats. Prost Leuk Essential Fatty Acids 55: 395–402

    Article  CAS  Google Scholar 

  18. Wallace JL, Chapman K, McKnight W (1999) Limited anti-inflammatory efficacy of cyclo-oxygenase-2 inhibition in carrageenan-air pouch inflammation. Br J Pharmacol 126: 1200–1204

    Article  PubMed  CAS  Google Scholar 

  19. Tanaka K, Makino S, Shimotori T, Aikawa Y, Inaba T, Yoshida C (1992) Pharmacological studies of the new anti-inflammatory agent 3-formylamino-7-methylsulfonylamino-6-phenoxy-4H-1-benzopyran-4-one. 2nd Communication: Effect on the arachidonic acid cascade. Arzneim Forsch 42: 945–950

    CAS  Google Scholar 

  20. Tofanetti O, Casciarri I, Cipolla PV, Cazzulani P, Omini C (1989) Effect of nimesulide on cyclooxygenase activity in rat gastric mucosa and inflammatory exudates. Med Sci Res 17: 745–746

    CAS  Google Scholar 

  21. Harada Y, Hatanaka K, Kawamura M, Saito M, Ogino M, Majima M, Ohno T, Ogino K, Yamamoto K, Taketani Y et al. (1996) Role of prostaglandin H synthase-2 in prostaglandin E2 formation in rat carrageenin-induced pleurisy. Prostaglandins 51: 19–33

    Article  PubMed  CAS  Google Scholar 

  22. Hatanaka K, Kawamura M, Ogino M, Saito M, Ogino K, Sumitaka M, Harada Y (1999) Expression and function of cyclooxygenase-2 in mesothelial cells during the late phase of rat carrageenin-induced pleurisy. Life Sci 65: 161–166

    Article  Google Scholar 

  23. Rainsford KD (1982) Adjuvant polyarthritis in rats: Is this a satisfactory model for screening anti-arthritic drugs? Agents and Actions 12: 452–458

    Article  PubMed  CAS  Google Scholar 

  24. Furukawa H, Kancoka H, Hoshi K, Kikukawa T, Abe C, Mizushima Y, Sakane T (1994) Effect of nimesulide on murine collagen-induced arthritis. Jpn J Inflamm 14: 31–34

    CAS  Google Scholar 

  25. Gilroy DW, Tomlinson A, Willoughby DA (1998) Differential effects of inhibition of isoforms of cyclooxygenase (COX-1, COX-2) in chronic inflammation. Inflamm Res 47: 79–85

    Article  PubMed  CAS  Google Scholar 

  26. Majima M, Hayashi I, Muramatsu M, Katada J, Yamashina S, Katori M (2000) Cyclooxygenase-2 enhances basic fibroblast growth factor-induced angiogenesis through induction of vascular endothelial growth factor in sponge implants. Br J Pharmacol 130: 641–649

    Article  PubMed  CAS  Google Scholar 

  27. Matsumoto H, Naraba H, Ueno A, Fujiyoshi T, Murakami M, Kudo I, Oh-ishi S (1998) Induction of cyclooxygenase-2 causes an enhancement of writhing response in mice. Eur J Pharmacol 352: 47–52

    Article  PubMed  CAS  Google Scholar 

  28. Miranda HF, Pincardi G (2001) Interactions of prazosin with non-steroidal anti-inflammatory drugs. Pharmacol Res Commun 11: 253–262

    CAS  Google Scholar 

  29. Miranda HF, Lopez J, Sierralta F, Correa A, Pinardi G (2001) NSAID antinociception measured in a chemical and a thermal assay in mice. Pain Res Manag 6:190–196

    PubMed  CAS  Google Scholar 

  30. Toutain PL, Cester CC, Haak T, Laroute V (2001) A pharmacokinetic/pharmacodynamic approach versus a dose titration for the determination of a dosage regimen: the case of nimesulide, a Cox-2 selective nonsteroidal anti-inflammatory drug in the dog. J Vet Pharmacol Therap 24: 43–55

    Article  CAS  Google Scholar 

  31. Toutain PL, Cester CC, Haak T, Metge S (2001) Pharmacokinetic profile and in vitro selective cyclooxygenase-2 inhibition by nimesulide in the dog. J Vet Pharmacol Therap 24: 35–42

    Article  CAS  Google Scholar 

  32. Ceserani R, Carboni L, Germini M, Mainardi P, Passoni A (1993) Antipyretic and platelet antiaggregating effects of nimesulide. Drugs 46(Suppl 1): 48–51

    Article  PubMed  CAS  Google Scholar 

  33. Steiner AA, Li S, Llanos-Q, Blatteis CM (2001) Differential inhibition by nimesulide of the early and late phases of intravenous-and intracerebroventricular-LPS-induced fever in guinea pigs. Neuroimmunomodulation 9: 263–275

    Article  PubMed  CAS  Google Scholar 

  34. Parnham MJ (1998) Is there a COX-fight during inflammation? Inflamm Res 47: 43

    Article  PubMed  CAS  Google Scholar 

  35. Bennett A, Berti F, Ferreira SH (1993) Nimesulide: A multifactorial therapeutic approach to the inflammatory process? A 7-year clinical experience. Drugs (Supp 1): 1–283

    Google Scholar 

  36. Murphy RC, Bowers RC, Dickinson J, Berry KZ (2004) Perspectives on the biosynthesis and metabolism of eicosanoids. In: Curtis Prior P (Ed): The Eicosanoids. John Wiley, Chichester. 3–16

    Google Scholar 

  37. Fu JY, Masferrrer IL, Seihert K, Raz A, Needleman P (1991) The induction and suppression of prostaglandin H2 synthase (cyclooxygenase) in human monocytes. J Biol Chem 265: 16737–16740

    Google Scholar 

  38. Xie W, Chipman JG, Robertson DL, Erikson RL, Simmons DL (1991) Expression of mitogen responsive gene encoding prostaglandin synthase is regulates by mRNA splicing. Proc Natl Acad Sci USA 88: 2692–2696

    Article  PubMed  CAS  Google Scholar 

  39. Vane JR, Botting RM (2001) Formation and actions of prostaglandins and inhibition of their synthesis. In: Vane JR, Botting RM (Eds): Therapeutic Roles of Selective COX-2 Inhibitors. William Harvey Press, London. 1–47

    Google Scholar 

  40. Rainsford KD (2004) Inhibition of Eicosanoids. In: Curtis Prior P (Ed): The Eicosanoids. John Wiley, Chichester. 198–210

    Google Scholar 

  41. Mizuno H, Sakamoto C, Matsuda K, Wada K, Uchida T, Noguchi H, Akamatsu T, Kasuga M (1997) Induction of cyclooxygenase-2 in gastric mucosal lesions and its inhibition by the specific antagonist delays healing in mice. Gastroenterology 112: 387–397

    Article  PubMed  CAS  Google Scholar 

  42. Droy-Lefais MT (1988) Prostanoids and stomach physiology. In: Curtis-Prior PB (Ed): Prostaglandins: Biology and Chemistry of Prostaglandins and Related Eicosanoids. Churchill Livingstone, London. 345–360

    Google Scholar 

  43. Kleinknecht D (1993) Diseases of the kidney caused by non-steroidal anti-inflammatory drugs. In: Stewart JH (Ed): Analgesic and NSAID-induced kidney diseases. Oxford University Press, Oxford. 160–179

    Google Scholar 

  44. Henzl MR (2004) Perspectives and clinical significance of eicosanoids in immunology, endocrinology and metabolic regulation. In: Curtis-Prior PB (Ed): The Eicosanoids. Wiley, Chichester. 229–236

    Google Scholar 

  45. Willoughby DA, Tomlinson A, Gilroy A and Willis D (1996) Inducible enzymes with special reference to COX-2 in inflammation and apoptosis. In: Vanel J, Botting J, Botting RM (Eds): Improved non-steroid anti-inflammatory drugs-COX-2-enzyme inhibitors. Kluwer Academic Publishers & William Harvey Press, London. 67–83

    Google Scholar 

  46. Vigdahl RL, Tukey RH (1979) Mechanism of action of novel anti-inflammatory drugs diflumidone and R-805. Biochem Pharmacol 26: 307–311

    Article  Google Scholar 

  47. Rufer C, Schillinger E, Böttcher I, Repenthin W, Herman C (1982) Nonsteroidal antiinflammatories — XII: mode of action of anti-inflammatory methane sulfonanilides. Biochem Pharmacol 31: 3591–3596

    Article  PubMed  CAS  Google Scholar 

  48. Böttcher I, Schweizer A, Glatt M, Werner H (1987) A sulphonamidoinadanone COP 28237 (ZK34228), a novel non-steroidal anti-inflammatory agent without gastrointestinal ulcerogenicity in rats. Drugs Under Exper Clin Res 13: 237–245

    Google Scholar 

  49. Carr DP, Henn R, Green JR (1986) Comparison of the systemic inhibition of thromboxane synthesis, anti-inflammatory activity and gastrointestinal toxicity of non-steroidal anti-inflammatory drugs in the rat. Agents Actions 19: 374–375

    Article  PubMed  CAS  Google Scholar 

  50. Ceserani R, Casciarri I, Cavaletti E, Cazzulani P (1991) Action of nimesulide on rat gastric prostaglandins and renal function. Drug Invest 3(Suppl 2): 14–21

    Google Scholar 

  51. Tavares IA, Bishai PM, Bennett A (1995) Activity of nimesulide on constitutive and inducible cyclooxygenases. Arzneim Forsch 45: 1093–1095

    CAS  Google Scholar 

  52. Vago T, Bevilacqua M, Norbiato G (1995) Effect of nimesulide action time dependence on selectivity towards prostagandin G/H synthase/cyclooxygenase activity. Arzneim Forsch 45: 1096–1098

    CAS  Google Scholar 

  53. Taniguchi Y, Jkesue A, Yokoyama K, Noda K, Debucchi H, Nakamura T et al. (1995) Selective inhibition by nimesulide, a novel non-steroidal anti-inflammatory drug with prostaglandin endoperoxide synthase-2 activity in vitro. Pharm Sci 1: 173–175

    Google Scholar 

  54. Patrignani P, Panara MR, Sciulli MG, Santini G, Renda G, Patrono C (1997) Differential inhibition of human prostaglandin endoperoxide synthase-1 and-2 by nonsteroidal antiinflammatory drugs. J Physiol Pharmacol 48: 623–631

    PubMed  CAS  Google Scholar 

  55. Cryer B, Feldman M (1998) Cyclooxygenase-1 and cyclooxygenase-2 selectivity of widely used nonsteroidal anti-inflammatory drugs. Am J Med 104: 413–421

    Article  PubMed  CAS  Google Scholar 

  56. Riendeau D, Charleson S, Cromlish W, Mancini JA, Wong E, Guay J (1997) Comparison of the cyclooxygenase-1 inhibitory properties of nonsteroidal anti-inflammatory drugs (NSAIDs) and selective COX-2 inhibitor, using sensitive microsomal and platelet assays. Can J Physiol Pharmacol 75: 1088–1095

    Article  PubMed  CAS  Google Scholar 

  57. Miralpeix M, Camacho M, López-Belmonte J, Canalias F, Beleta J, Palacios JM, Vila L (1997) Selective induction of cyclo-oxygenase activity in the permanent human endothelial cell line HUV-EC-C: biochemical and pharmacological characterization. Br J Pharmacol 121: 171–180

    Article  PubMed  CAS  Google Scholar 

  58. Warner TD, Giuliano F, Vojnovic I, Bukasa A, Mitchell JA, Vane JR (1999) Nonsteroid drug selectivities for cyclo-oxygenase-1 rather than cyclo-oxygenase-2 are associated with human gastrointestinal toxicity: a full in vitro analysis. Proc Natl Acad Sci USA 96: 7563–7568

    Article  PubMed  CAS  Google Scholar 

  59. Warner TD, Pairet M, Van Ryn J (2001) Test systems for inhibitors of cyclooxygenase-1 and cyclooxygenase-2. In: JR Vane, RM Botting (Eds): Therapeutic roles of selective COX-2 inhibitors. William Harvey Press, London. 76–94

    Google Scholar 

  60. Fenner H (1997) Differentiating among nonsteroidal antiinflammatory drugs by pharmacokinetic and pharmacodynamic profiles. Semin Arthritis Rheum 26(Suppl 1) 28–33

    Article  PubMed  CAS  Google Scholar 

  61. Brooks P, Emery P, Evans JF, Fenner H, Hawkey CJ, Patrono C, Smolen J, Breedveld F, Day R, Dougados M et al. (1999) Interpreting the clinical significance of the differential inhibition of cyclooxygenase-1 and cyclooxygenase-2. Rheumatology (Oxford) 38: 779–788

    Article  PubMed  CAS  Google Scholar 

  62. Cullen L, Kelly L, Connor SO, Fitzgerald DJ (1998) Selective cyclooxygenase-2 inhibition by nimesulide in man. J Pharmacol Exper Ther 287: 578–582

    CAS  Google Scholar 

  63. Fahmi H, He Y, Zhang M, Martel-Pelletier J, Pelletier JP, Di Battista A (2001) Nimesulide reduces interleukin-1beta-induced cyclooxygenase-2 gene expression in human synovial fibroblasts. Osteoarthritis Cartilage 9: 332–340

    Article  PubMed  CAS  Google Scholar 

  64. Di Battista JA, Fahmi H, Zhang M, Martel-Pelletier J, Pelletier J-P (2001) Differential regulation of interleukin-1ß-induced cyclooxygenase-2 gene expression by nimeslide in human synovial fibroblasts. Clin Exp Rheumatol, 19(Suppl 22): S3–S5

    PubMed  Google Scholar 

  65. Taniguchi Y, Yokoyama K, Ikesue A, Noda K, Debuchi H, Nakamura T, Toda A, Shimeno H (1998) Inhibition by nimesulide of prostaglandin production in rat macrophages. Drugs Exp Clin Res 24: 17–27

    PubMed  CAS  Google Scholar 

  66. Tool ATJ, Verhoeven AJ (1995) Inhibition of the production of platelet activating factor and of leukotriene B4 in activated neutrophils by nimesulide due to an elevation of intracellular cyclic adenosine monophosphate. Arzneim Forsch 45: 1110–1114

    CAS  Google Scholar 

  67. Gray PA, Warner TD, Vojnovic I, Del Soldato P, Parikh A, Scadding GK, Mitchell JA (2002) Effects of non-steroidal anti-inflammatory drugs on the cyclooxygenase and lipoxygenase activity in whole blood from aspirin-sensitive asthmatics versus healthy donors. Br J Pharmacol 137: 1031–1038

    Article  PubMed  CAS  Google Scholar 

  68. Clish CB, Sun Y-P, Serhan CN (2001) Identification of dual cyclooxygenase-eicosanoid oxidoreductase inhibitors: NSAIDs that inhibit reductase/LTB4 dehydrogenase 1. Biochem Biophys Res Commun 288: 868–874

    Article  PubMed  CAS  Google Scholar 

  69. Ueda N, Deutsch DG (2004) Biosynthesis and degradation of anandamide, an endogenous ligand of cannabinoid receptors. In: Curtis-Prior P (Ed): The Eicosanoids. Wiley, Chichester. 179–187

    Chapter  Google Scholar 

  70. Fowler CJ, Holt S, Tiger G (2003) Acidic nonsteroidal anti-inflammatory drugs inhibit rat brain fatty acid amide hydrolase in a pH-dependent manner. J Enzyme Inhib Med Chem 18: 55–58

    Article  PubMed  CAS  Google Scholar 

  71. Kim J, Alger BE (2004) Inhibition of cyclooxygenase-2 potentiates retrograde endocannabinoid effects in hippocampus. Nature Neurosci 7: 697–698

    Article  PubMed  CAS  Google Scholar 

  72. Spencer AG, Woods JW, Arakawa T, Singer II, Smith WL (1998) Subcellular localization of prostaglandin endoperoxide H synthases-1 and-2 by immunoelectron microscopy. J Biol Chem 273: 9886–9893

    Article  PubMed  CAS  Google Scholar 

  73. Meade EA, Smith WL, DeWitt DL (1993) Differential inhibition of prostaglandin endoperoxide synthase (cyclooxygenase) isozymes by aspirin and other non-steroidal anti-inflammatory drugs. J Biol Chem 268: 6610–6614

    PubMed  CAS  Google Scholar 

  74. Laneuville O, Breuer DK, Dewitt DL, Hla T, Funk CD, Smith WL (1994) Differential inhibition of human prostaglandin endoperoxide H synthases-1 and-2 by nonsteroidal anti-inflammatory drugs. J Pharmacol Exp Ther 271: 927–934

    PubMed  CAS  Google Scholar 

  75. Copeland RA, Williams JM, Giannaras J, Nurnberg S, Covington M, Pinto D, Pick S, Trzaskos JM (1994) Mechanism of selective inhibition of the inducible isoform of prostaglandin G/H synthase. Proc Natl Acad Sci USA 91: 11202–11206

    Article  PubMed  CAS  Google Scholar 

  76. Gierse JK, Koboldt CM, Walker MC, Seibert K, Isakson PC (1999) Kinetic basis for selective inhibition of cyclo-oxygenases. Biochem J 339: 607–614

    Article  PubMed  CAS  Google Scholar 

  77. Walker MC, Kurumbail RG, Kiefer JR, Moreland KT, Koboldt CM, Isakson PC, Seibert K, Gierse JK (2001) A three-step kinetic mechanism for selective inhibition of cyclo-oxygenase-2 by diarylheterocyclic inhibitors. Biochem J 357: 709–718

    Article  PubMed  CAS  Google Scholar 

  78. FitzGerald GA (2003) COX-2 and beyond: Approaches to prostaglandin inhibition in human disease. Nat Rev Drug Discov 2: 879–890

    Article  PubMed  CAS  Google Scholar 

  79. Flower RJ (2003) The development of COX2 inhibitors. Nat Rev Drug Discov 2: 179–191

    Article  PubMed  CAS  Google Scholar 

  80. Hood WF, Gierse JK, Isakson PC, Kiefer JR, Kurumbail RG, Seibert K, Monahan JB (2003) Characterization of celecoxib and valdecoxib binding to cyclooxygenase. Mol Pharmacol 63: 870–877

    Article  PubMed  CAS  Google Scholar 

  81. Picot D, Loll PJ, Garavito RM (1994) The X-ray crystal structure of the membrane protein prostaglandin H2 synthase-1. Nature 367: 243–249

    Article  PubMed  CAS  Google Scholar 

  82. Luong C, Miller A, Barnett J, Chow J, Ramesha C, Browner MF (1996) Flexibility of the NSAID binding site in the structure of human cyclooxygenase-2. Nat Struct Biol 3: 927–933

    Article  PubMed  CAS  Google Scholar 

  83. Kurumbail RG, Stevens AM, Gierse JK, McDonald JJ, Stegeman RA, Pak JY, Gildehaus D, Miyashiro JM, Penning TD, Seibert K et al. (1996) Structural basis for selective inhibition of cyclooxygenase-2 by anti-inflammatory agents. Nature 384: 644–648

    Article  PubMed  CAS  Google Scholar 

  84. Berman HM, Westbrook J, Feng Z, Gilliland G, Bhat TN, Weissig H, Shindyalov IN, Bourne PE (2000) The Protein Data Bank. Nucleic Acids Res 28: 235–242

    Article  PubMed  CAS  Google Scholar 

  85. Marnett LJ, Kalgutkar AS (1998) Design of selective inhibitors of cyclooxygenase-2 as nonulcerogenic anti-inflammatory agents. Curr Opin Chem Biol 4: 482–490

    Article  Google Scholar 

  86. Thuresson ED, Lakkides KM, Rieke CJ, Sun Y, Wingerd BA, Micielli R, Mulichak AM, Malkowski MG, Garavito RM, Smith WL (2001) Prostaglandin Endoperoxide H synthase-1. The functions of cyclooxygenase active site residues in the binding, positioning, and oxygenation of arachidonic acid. J Biol Chem 276: 10347–10359

    Article  PubMed  CAS  Google Scholar 

  87. Malkowski MG, Ginell SL, Smith WL, Garavito RM (2000) The productive conformation of arachidonic acid bound to prostaglandin synthase. Science 289: 1933–1937

    Article  PubMed  CAS  Google Scholar 

  88. Loll PJ, Picot D, Garavito RM (1995) The structural basis of aspirin activity inferred from the crystal structure of inactivated prostaglandin H2 synthase. Nat Struct Biol 2: 637–643

    Article  PubMed  CAS  Google Scholar 

  89. Kiefer JR, Pawlitz JL, Moreland KT, Stegeman RA, Hood WF, Gierse JK, Stevens AM, Goodwin DC, Rowlinson SW, Marnett LJ et al. (2000) Structural insights into the stereochemistry of the cyclooxygenase reaction. Nature 405: 97–101

    Article  PubMed  CAS  Google Scholar 

  90. Rieke CJ, Mulichak AM, Garavito RM, Smith WL (1999) The role of arginine120 of human prostaglandin endoperoxide H synthase-2 in the interaction with fatty acid substrates and inhibitors. J Biol Chem 274: 17109–17114

    Article  PubMed  CAS  Google Scholar 

  91. Mancini JA, Riendeau D, Falgueyret JP, Vickers PJ, O’Neill GP (1995) Arginine 120 of prostaglandin G/H synthase-1 is required for the inhibition by nonsteroidal anti-inflammatory drugs containing a carboxylic acid moiety. J Biol Chem 270: 29372–29377

    Article  PubMed  CAS  Google Scholar 

  92. Rowlinson SW, Kiefer JR, Prusakiewicz JJ, Pawlitz JL, Kozak KR, Kalgutkar AS, Stallings WC, Kurumbail RG, Marnett LJ (2003) A novel mechanism of cyclooxygenase-2 inhibition involving interactions with Ser-530 and Tyr-385. J Biol Chem 278: 45763–45769

    Article  PubMed  CAS  Google Scholar 

  93. Hochgesang GP, Rowlinson SW, Marnett LJ (2000) Tyrosine-385 is critical for acetylation of cyclooxygenase-2 by aspirin. J Am Chem Soc 122: 6514–6515

    Article  CAS  Google Scholar 

  94. Kurumbail RG, Kiefer JR, Marnett LJ (2001) Cyclooxygenase enzymes: catalysis and inhibition. Curr Opin Struct Biol 11: 752–760

    Article  PubMed  CAS  Google Scholar 

  95. García-Nieto R, Pérez C, Gago F (2000) Automated docking and molecular dynamics simulations of nimesulide in the cyclooxygenase active site of human prostaglandinendoperoxide synthase-2 (COX-2) J Comp-Aided Mol Des 14: 147–160

    Article  Google Scholar 

  96. Pedretti A, Villa AM, Villa L, Vistoli G (1997) Interactions of some PGHS-2 selective inhibitors with the PGHS-1: an automated docking study by BioDock. Farmaco 52: 487–491

    PubMed  CAS  Google Scholar 

  97. Fabiola GF, Pattabhi V, Nagarajan K (1998) Structural basis for selective inhibition of COX-2 by nimesulide. Bioorg Med Chem 6: 2337–2344

    Article  PubMed  CAS  Google Scholar 

  98. García-Nieto R, Pérez C, Checa A, Gago F (1999) Molecular model of the interaction between nimesulide and human cyclooxygenase-2. Rheumatology 38(Suppl 1): 14–18

    Article  PubMed  Google Scholar 

  99. Dupont L, Pirotte B, Masereel B, Delarge J, Geczy J (1995) Nimesulide. Acta Crystallogr C51: 507–509

    CAS  Google Scholar 

  100. Allen FH, Bellard S, Brice MD, Cartwright BA, Doubleday A, Higgs H, Hummelink T, Hummelink-Peters BG, Kennard O, Motherwell WDS, Rodgers JR, Watson DG (1979) The Cambridge Crystallographic Data Centre: computer-based search, retrieval, analysis and display of information. Acta Cryst B35: 2331–2339

    CAS  Google Scholar 

  101. Rogge CE, Liu W, Wu G, Wang L-H, Kulmacz RJ, Tsai A-L (2004) Identification of Tyr504 as an alternative tyrosyl radical site in human prostaglandin H synthase-2. Biochemistry 43: 1560–1568

    Article  PubMed  CAS  Google Scholar 

  102. Futaki N, Takahashi S, Yokoyama M, Arai I, Higuchi S, Otomo S (1994) NS-398, a new anti-inflammatory agent, selectively inhibits prostaglandin G/H synthase/cyclooxygenase (COX-2) activity in vitro. Prostaglandins 47: 55–59

    Article  PubMed  CAS  Google Scholar 

  103. Harada Y, Kawamura M, Hatanaka K, Saito M, Ogino M, Ohno T, Ogino K, Yang Q (1998) Differing profiles of prostaglandin formation inhibition between selective prostaglandin H synthase-2 inhibitors and conventional NSAIDs in inflammatory and noninflammatory sites of the rat. Prostaglandins Other Lipid Mediat 55: 345–358

    PubMed  CAS  Google Scholar 

  104. Li CS, Black WC, Chan CC, Ford-Hutchinson AW, Gauthier JY, Gordon R, Guay D, Kargman S, Lau CK, Mancini J et al. (1995) Cyclooxygenase-2 inhibitors. Synthesis and pharmacological activities of 5-methanesulfonamido-1-indanone derivatives. J Med Chem 38: 4897–4905

    Article  PubMed  CAS  Google Scholar 

  105. Ouellet M, Percival MD (1995) Effect of inhibitor time-dependency on selectivity towards cyclooxygenase isoforms. Biochem J 306: 247–251

    PubMed  Google Scholar 

  106. Guo Q, Wang LH, Ruan KH, Kulmacz RJ (1996) Role of Val509 in time-dependent inhibition of human prostaglandin H synthase-2 cyclooxygenase activity by isoformselective agents. J Biol Chem 271: 19134–19139

    Article  PubMed  CAS  Google Scholar 

  107. Wong E, Bayly C, Waterman HL, Riendeau D, Mancini JA (1997) Conversion of prostaglandin G/H synthase-1 into an enzyme sensitive to PGHS-2-selective inhibitors by a double His513ÆArg and Ile523ÆVal mutation. J Biol Chem 272: 9280–9286

    Article  PubMed  CAS  Google Scholar 

  108. Selinsky BS, Gupta K, Sharkey CT, Loll PJ (2001) Structural analysis of NSAID binding by prostaglandin H(2) synthase: time-dependent and time-independent inhibitors elicit identical enzyme conformations. Biochemistry 40: 5172–5180

    Article  PubMed  CAS  Google Scholar 

  109. Llorens O, Pérez JJ, Palomer A, Mauleón D (1999) Structural basis of the dynamic mechanism of ligand binding to cyclooxygenase. Bioorg Med Chem Lett 9: 2779–2784

    Article  PubMed  CAS  Google Scholar 

  110. Gierse JK, McDonald JJ, Hauser SD, Rangwala SH, Koboldt CM, Seibert K (1996) A single amino acid difference between cyclooxygenase-1 (COX-1) and-2 (COX-2) reverses the selectivity of COX-2 specific inhibitors. J Biol Chem 271: 15810–15814

    Article  PubMed  CAS  Google Scholar 

  111. Mancini JA, Vickers PJ, O’Neill GP, Boily C, Falgueyret JP, Riendeau D (1997) Altered sensitivity of aspirin-acetylated prostaglandin G/H synthase-2 to inhibition by nonsteroidal anti-inflammatory drugs. Mol Pharmacol 51: 52–60

    PubMed  CAS  Google Scholar 

  112. Cignarella G, Vianello P, Berti F, Rossoni G (1996) Synthesis and pharmacological evaluation of derivatives structurally related to nimesulide. Eur J Med Chem 31: 359–364

    Article  CAS  Google Scholar 

  113. Panara MR, Padovano R, Sciuii MG, Santini G, Renda G, Rotondo MT, Pace A, Patrono C, Patrignani P (1998) Effects of nimesulide on constitutive and inducible prostanoid biosynthesis in human beings. Clin Pharmacol Ther 63: 672–681

    Article  PubMed  CAS  Google Scholar 

  114. Kozak KR, Prusakiewicz JJ, Rowlinson SW, Schneider C, Marnett LJ (2001) Amino acid determinants in cyclooxygenase-2 oxygenation of the endocannabinoid 2-arachidonylglycerol. J Biol Chem 276: 30072–30077

    Article  PubMed  CAS  Google Scholar 

  115. Kalgutkar AS, Crews BC, Rowlinson SW, Marnett AB, Kozak KR, Remmel RP, Marnett LJ (2000) Biochemically based design of cyclooxygenase-2 (COX-2) inhibitors: facile conversion of nonsteroidal antiinflammatory drugs to potent and highly selective COX-2 inhibitors. Proc Natl Acad Sci USA 97: 925–930

    Article  PubMed  CAS  Google Scholar 

  116. Greig GM, Francis DA, Falgueyret JP, Ouellet M, Percival MD, Roy P, Bayly C, Mancini JA, O’Neill GP (1997) The interaction of arginine 106 of human prostaglandin G/H synthase-2 with inhibitors is not a universal component of inhibition mediated by nonsteroidal anti-inflammatory drugs. Mol Pharmacol 52: 829–838

    PubMed  CAS  Google Scholar 

  117. Bhattacharyya DK, Lecomte M, Rieke CJ, Garavito M, Smith WL (1996) Involvement of arginine 120, glutamate 524, and tyrosine 355 in the binding of arachidonate and 2-phenylpropionic acid inhibitors to the cyclooxygenase active site of ovine prostaglandin endoperoxide H synthase-1. J Biol Chem 271: 2179–2184.

    Article  PubMed  CAS  Google Scholar 

  118. So OY, Scarafia LE, Mak AY, Callan OH, Swinney DC (1998) The dynamics of prostaglandin H synthases. Studies with prostaglandin H synthase 2 Y355F unmask mechanisms of time-dependent inhibition and allosteric activation. J Biol Chem 273: 5801–5807

    Article  PubMed  CAS  Google Scholar 

  119. Loll PJ, Picot D, Ekabo O, Garavito RM (1996) Synthesis and use of iodinated nonsteroidal antiinflammatory drug analogs as crystallographic probes of the prostaglandin H2 synthase cyclooxygenase active site. Biochemistry 35: 7330–7340

    Article  PubMed  CAS  Google Scholar 

  120. Singh S, Shardra N, Mahajan L (1999) Spectrophotometric determination of pKa of nimesulide. Int J Pharm 176: 261–264

    Article  CAS  Google Scholar 

  121. Julémont F, de Leval X, Michaux C, Damas J, Charlier C, Durant F, Pirotte B, Dogné JM (2002) Spectral and crystallographic study of pyridinic analogues of nimesulide: determination of the active form of methanesulfonamides as COX-2 selective inhibitors. J Med Chem 45: 5182–5185

    Article  PubMed  CAS  Google Scholar 

  122. Michaux C, Charlier C, Julemont F, Norberg B, Dogne J-M, Pirotte B, Durant F (2001) FJ6, N-methyl-N-(4-nitro-2-phenoxyphenyl)methanesulfonamide. Acta Crystallogr E57: 1012–1013

    Google Scholar 

  123. Hendlich M, Bergner A, Gunther J, Klebe G (2003) Relibase: design and development of a database for comprehensive analysis of protein-ligand interactions. J Mol Biol 326: 607–620

    Article  PubMed  CAS  Google Scholar 

  124. Penning TD, Talley JJ, Bertenshaw SR, Carter JS, Collins PW, Docter S, Graneto MJ, Lee LF, Malecha JW, Miyashiro JM et al. (1997) Synthesis and biological evaluation of the 1,5-diarylpyrazole class of cyclooxygenase-2 inhibitors: identification of 4-[5-(4-methylphenyl)-3-(trifluoromethyl)-1H-pyrazol-1-yl]benzenesulfonamide (SC-58635, celecoxib) J Med Chem 40: 1347–1365

    Article  PubMed  CAS  Google Scholar 

  125. Notredame C, Higgins D, Heringa J (2000) T-Coffee: A novel method for multiple sequence alignments. J Mol Biol 302: 205–217

    Article  PubMed  CAS  Google Scholar 

  126. Brooks PM, Day RO (1991) Nonsteroidal anti-inflammatory drugs. Differences and similarities. N Eng J Med 24: 1716–1723

    Google Scholar 

  127. Smith MJH (1978) Aspirin and prostaglandins: some recent developments. Agents Actions 8: 427–429

    Article  PubMed  CAS  Google Scholar 

  128. Kitchen EA, Dawson W, Rainsford KD, Cawston T (1985) Inflammation and possible modes of action of anti-inflammatory drugs. In: Anti-Inflammatory and Anti-Rheumatic Drugs. Volume I Infalmmation Mechanisms and Actions of Traditional Drugs. CRC Press, Boca Raton. 21–87

    Google Scholar 

  129. Rainsford KD (1996) Mode of action, uses, and side effects of anti-inflammatory drugs. In: Rainsford KD (Ed): Advances in Anti-Rheumatic Therapy. CRC Press, Boca Raton. 59–111

    Google Scholar 

  130. Dallegri F, Ottonello L (1997) Tissue injury in neutrophilic inflammation. Inflamm Res 46: 382–391

    Article  PubMed  CAS  Google Scholar 

  131. Diaz-Gonzales F, Sanchez-Madrid F (1998) Inhibition of leukocyte adhesion: an alternative mechanism of action for anti-inflammatory drugs. Immunology Today 19: 169–172

    Article  Google Scholar 

  132. Tegeder I, Pfeilschifter J, Geisslinger G (2001) Cyclooxygenase-independent actions of cyclooxygenase inhibitors. FASEB J 224: 2057–2072

    Article  Google Scholar 

  133. Tak PT, Bresnihan B (2000) The pathogenesis and prevention of joint damage in rheumatic arthritis. Arthritis Rheum 43: 2619–2633

    Article  PubMed  CAS  Google Scholar 

  134. Faurschou M, Borregaard N (2003) Neutrophil granules and secretory vesicles in inflammation. Microbes Infect 14: 1317–1327

    Article  CAS  Google Scholar 

  135. Lindbom L, Werr J (2002) Integrin-dependent neutrophil migration in extravascular tissue. Semin Immunol 14: 115–121

    Article  PubMed  CAS  Google Scholar 

  136. Weiss SJ (1989) Tissue destruction by neutrophils. N Engl J Med 320: 365–376

    PubMed  CAS  Google Scholar 

  137. Scapini P, Lapinet-Vera JA, Gasperini S, Calzetti F, Bazzoni F, Cassatella MA (2000) The neutrophil as a cellular source of chemokines. Immunol Rev 177: 195–203

    Article  PubMed  CAS  Google Scholar 

  138. Bevilacqua M, Vago T, Baldi G, Renesto E, Dallegri F, Norbiato G (1994) Nimesulide decreases superoxide production by inhibiting phosphodiesterase type IV. Eur J Pharmacol 268: 415–423

    Article  PubMed  CAS  Google Scholar 

  139. Dapino P, Ottonello L, Dallegri F (1994) The anti-inflammatory drug nimesulide inhibits neutrophil adherence to and migration across monolayers of cytokine-activated endothelial cells. Respiration 61: 336–341

    Article  PubMed  CAS  Google Scholar 

  140. Gomez-Gaviro MV, Gonzalez-Alvaro I, Dominguez-Jimenez C, Peschon J, Black RA, Sanchez-Madrid F, Diaz-Gonzalez F (2002) Structure-function relationship and role of tumor necrosis factor-converting enzyme in the down-regulation of L-selectin by nonsteroidal anti-inflammatory drugs. J Biol Chem 277: 38212–38221

    Article  PubMed  CAS  Google Scholar 

  141. Capsoni F, Venegoni E, Minonzio F, Ongari AM, Maresca V, Zanussi C (1987) Inhibition of neutrophil oxidative metabolism by nimesulide. Agents Actions 21: 121–129

    Article  PubMed  CAS  Google Scholar 

  142. Capecchi PL, Ceccatelli L, Beermann U, Laghi Pasini F, Di Perri T (1993) Inhibition of neutrophil function in vitro by nimesulide. Preliminary evidence of an adenosine-mediated mechanism. Arzneim Forsch 43: 992–996

    CAS  Google Scholar 

  143. Mouithys-Mickalad AM, Zheng SX, Deby-Dupont GP, Deby CM, Lamy MM, Reginster JY, Henrotin YE (2000) In vitro study of anti-oxidant properties of non steroidal anti-inflammatory drugs by chemiluminescence and electron spin resonance (ESR) Free Radic Res 33: 607–621

    Article  PubMed  CAS  Google Scholar 

  144. Ottonello L, Dapino P, Pastorino G, Montagnani G, Gatti F, Guidi G, Dallegri F (1993) Nimesulide as a down-regulator of the activity of neutrophil myeloperoxidase pathway. Drugs 46: 29–33

    Article  PubMed  CAS  Google Scholar 

  145. Ottonello L, Dapino P, Scirocco MC, Bevilacqua M, Dallegri F (1995) Sulphonamides as anti-inflammatory agents: old drugs for new therapeutic strategies in inflammation? Clin Sci 88: 331–336

    PubMed  CAS  Google Scholar 

  146. Dallegri F, Dapino P, Ottonello L, Guidi G (1991) Suppression of neutrophil chloramine production by nimesulide. Drug Invest 3:75–78

    Google Scholar 

  147. Ottonello L, Amelotti M, Barbera P, Dapino P, Mancini M, Tortolina G, Dallegri F (1999) Chemoattractant-induced release of elastase by tumour necrosis factor-primed human neutrophils: autoregulation by endogenous adenosine. Inflamm Res 48: 637–642

    Article  PubMed  CAS  Google Scholar 

  148. Zimmerli W, Sansano S, Wiesemberg-Böttcher I (1991) Influence of the anti-inflammatory compound flosulide on granulocyte function. Biochem Pharmacol 10: 1913–1919

    Article  Google Scholar 

  149. Dallegri F, Ottonello L, Dapino P, Sacchetti C (1992) Effect of nonsteroidal anti-inflammatory drugs on the neutrophil promoted inactivation of alpha-1-proteinase inhibitor. J Rheumatol 19: 419–423

    PubMed  CAS  Google Scholar 

  150. Dallegri F, Ottonello L, Dapino P, Bevilacqua M (1992) The anti-inflammatory drug nimesulide rescues alpha-1-proteinase inhibitor from oxidative inactivation by phagocytosis neutrophils. Respiration 59: 1–4

    Article  PubMed  CAS  Google Scholar 

  151. Ottonello L, Dapino P, Dallegri F (1993) Inactivation of alpha-1-proteinase inhibitor by neutrophil metalloproteinases. Respiration 60: 32–37

    Article  PubMed  CAS  Google Scholar 

  152. Kimura T, Iwase M, Kondo G, Watanabe H, Ohashi M, Ito D, Nagumo M (2003) Suppressive effect of selective cycloxygenase-2 inhibitor on cytokine release in human neutrophils. Int Immunopharm 3: 1519–1528

    Article  CAS  Google Scholar 

  153. Sawada T, Hashimoto S, Tohma S (2000) Inhibition of L-leucine methyl ester mediated killing of THP-1, a human monocytic cell line, by a new anti-inflammatory drug, T614. Immunopharmacology 49: 285–294

    Article  PubMed  CAS  Google Scholar 

  154. Lardner A (2001) The effects of extracellular pH on immune function. J Leukoc Biol 69: 522–530

    PubMed  CAS  Google Scholar 

  155. Kobayashi M, Tanaka T, Usui T (1982) Inactivation of lysosomal enzymes by the respiratory burst of polymorphonuclear leukocytes. Possible involvement of myeloperoxidase-H2O2-halide system. J Lab Clin Med 100: 896–907

    PubMed  CAS  Google Scholar 

  156. Klempner MS, Styrt B (1983) Alkalinizing the intralysosomal pH inhibits degranulation of human neutrophils. J Clin Invest 72:1793–800

    Article  PubMed  CAS  Google Scholar 

  157. Klempner MS, Styrt B (1983) Alkalinization of the intralysosomal pH by clindamycin and its effects on neutrophil function. J Antimicrob Chemother 12(Suppl C) 39–50

    PubMed  CAS  Google Scholar 

  158. Yocum DE, Hempel S, Busse WW (1984) Regulation of the human polymorphonuclear leukocyte inflammatory response by inhibitors of arachidonic acid metabolism. J Immunopharmacol 6: 237–255

    Article  PubMed  CAS  Google Scholar 

  159. Styrt B, Klempner MS (1984) Inhibition of neutrophil oxidative metabolism by lysosomotropic weak bases. Blood 67: 334–342

    Google Scholar 

  160. Kurita N, Terao K, Brummer E, Ito E, Nishimura K, Miyaji M (1991) Resistance of Histoplasma capsulatum to killing by human neutrophils. Evasion of oxidative burst and lysosomal-fusion products. Mycopathologia 115: 207–213

    Article  PubMed  CAS  Google Scholar 

  161. Dri P, Presani G, Perticarari S, Alberi L, Prodan M, Decleva E (2002) Measurement of phagosomal pH of normal and CGD-like human neutrophils by dual fluorescence flow cytometry. Cytometry 48:159–166

    Article  PubMed  Google Scholar 

  162. Ivanov IT, Tzaneva M (2002) Direct cytotoxicity of non-steroidal anti-inflammatory drugs in acidic media: model study on human erythrocytes with DIDS-inhibited anion exchanger. Pharmazie 57: 848–851

    PubMed  CAS  Google Scholar 

  163. Sinn H, Schrenk HH, Friedrich EA, Schilling U, Maier-Borst W (1990) Design of compounds having an enhanced tumour uptake, using serum albumin as a carrier. Part I. In. J Radiat Appl Instrum B 17: 819–827

    CAS  Google Scholar 

  164. Wosikowski K, Biedermann E, Rattel B, Breiter N, Jank P, Loser R, Jansen G, Peters GJ (2003) In vitro and in vivo antitumor activity of methotrexate conjugated to human serum albumin in human cancer cells. Clin Cancer Res 9: 1917–1927

    PubMed  CAS  Google Scholar 

  165. Stossel TP (1992) The mechanical response of white blood cells. In: JI Gallin, IM Goldstein, R Sniderman (Eds): Inflammation: Basic Principles and Clinical Correlates. Raven Press, New York. 459–475

    Google Scholar 

  166. Ottonello L, Dapino P, Pastorino G, Dallegri F (1992) Inhibition of the neutrophil oxidative response induced by the oral administration of nimesulide in normal volunteers. J Clin Lab Immunol 37: 91–96

    PubMed  CAS  Google Scholar 

  167. Bravo-Cuellar A, Garcia-Reyes G, Barba-Barajas M, Carranco-Lopez A, Dominguez-Rodriguez JR (2003) Modification by nimesulide administration of the phagocytic activity of polymorphonuclears in healthy subjects. Biomed Pharmacol 57: 434

    Article  CAS  Google Scholar 

  168. Condliffe AM, Kitchen E, Chilvers ER (1998) Neutrophil priming: pathophysiological consequenbces and underlying mechanisms. Clin Sci (Lond) 94: 461–471

    CAS  Google Scholar 

  169. Hampton MB, Kettle AJ, Winterbourn CC (1998) Inside the neutrophil phagosome: oxidants, myeloperoxidase, and bacterial killing. Blood 92: 3007–3017

    PubMed  CAS  Google Scholar 

  170. Reeves EP, Nagl M, Godovac-Zimmermann J, Segal AW (2003) Reassessment of the microbicidal activity of reactive oxygen species and hypochlorous acid with reference to the phagocytic vacuole of the neutrophil granulocyte. J Med Microbiol 52: 643–651

    Article  PubMed  CAS  Google Scholar 

  171. Belova LA (1997) Biochemistry of inflammatory processes and vascular injury. Role of neutrophils: a review. Biochemistry (Mosc) 62: 563–570

    CAS  Google Scholar 

  172. Wientjes FB, Segal AW (1995) NADPH oxidase and the respiratory burst. Semin Cell Biol 6: 357–365

    Article  PubMed  CAS  Google Scholar 

  173. Cassatella MA (1998) The neutrophil: one of the cellular targets of interleukin-10. Int J Clin Lab Res 28: 148–161

    Article  PubMed  CAS  Google Scholar 

  174. Binder R, Kress A, Kan G, Herrmann K, Kirschfink M (1999) Neutrophil priming by cytokines and vitamin D binding protein (Gc-globulin): impact on C5a-mediated chemotaxis, degranulation and respiratory burst. Mol Immunol 36: 885–892

    Article  PubMed  CAS  Google Scholar 

  175. Klebanoff SJ (1999) Myeloperoxidase. Proc Assoc Am Physicians 111: 383–389

    PubMed  CAS  Google Scholar 

  176. Nauseef WM (1999) The NADPH-dependent oxidase of phagocytes. Proc Assoc Am Physicians 111: 373–382

    PubMed  CAS  Google Scholar 

  177. Berridge MV, Tan AS (2000) High-capacity redox control at the plasma membrane of mammalian cells: trans-membrane, cell surface, and serum NADH-oxidases. Antioxid Redox Signal 2: 231–242

    Article  PubMed  CAS  Google Scholar 

  178. Lardner A (2001) The effects of extracellular pH on immune function. J Leukoc Biol 69: 522–530

    PubMed  CAS  Google Scholar 

  179. Neumann NF, Stafford JL, Barreda D, Ainsworth AJ, Belosevic M (2001) Antimicrobial mechanisms of fish phagocytes and their role in host defense. Dev Comp Immunol 25: 807–825

    Article  PubMed  CAS  Google Scholar 

  180. Forman HJ, Torres M (2002) Reactive oxygen species and cell signaling: respiratory burst in macrophage signaling. Am J Respir Crit Care Med 166: S4–S8

    Article  PubMed  Google Scholar 

  181. Gougerot-Pocidalo MA, el Benna J, Elbim C, Chollet-Martin S, Dang MC (2002) Regulation of human neutrophil oxidative burst by pro-and anti-inflammatory cytokines. J Soc Biol 196: 37–46

    PubMed  CAS  Google Scholar 

  182. Karlsson A, Dahlgren C (2002) Assembly and activation of the neutrophil NADPH oxidase in granule membranes. Antioxid Redox Signal 4: 49–60

    Article  PubMed  CAS  Google Scholar 

  183. Vignais PV (2002) The superoxide-generating NADPH oxidase: structural aspects and activation mechanism. Cell Mol Life Sci 59: 1428–1459

    Article  PubMed  CAS  Google Scholar 

  184. Quinn MT, Gauss KA (2004) Structure and regulation of the neutrophil respiratory burst oxidase: comparison with nonphagocyte oxidases. J Leukoc Biol 76: 760–781

    Article  PubMed  CAS  Google Scholar 

  185. Werner E (2004) GTPases and reactive oxygen species: switches for killing and signaling. J Cell Sci 117: 143–153

    Article  PubMed  CAS  Google Scholar 

  186. Chilvers ER, Rossi AG, Murray J, Haslett C (1998) Regulation of granulocyte apoptosis and implications for anti-inflammatory therapy. Thorax 53: 533–534

    Article  PubMed  CAS  Google Scholar 

  187. Haslett C (1997) Granulocyte apoptosis and inflammatory disease. Br Med Bull 53: 669–683

    PubMed  CAS  Google Scholar 

  188. Haslett C, Savill JS, Whyte MK, Stern M, Dransfield I, Meagher LC (1994) Granulocyte apoptosis and the control of inflammation. Philos Trans R Soc Lond B Biol Sci 345: 327–333

    Article  PubMed  CAS  Google Scholar 

  189. Heasman SJ, Giles KM, Ward C, Rossi AG, Haslett C, Dransfield I (2003) Glucocorticoid-mediated regulation of granulocyte apoptosis and macrophage phagocytosis of apoptotic cells: implications for the resolution of inflammation. J Endocrinol 178: 29–36

    Article  PubMed  CAS  Google Scholar 

  190. Martin MC, Dransfield I, Haslett C, Rossi AG (2001) Cyclic AMP regulation of neutrophil apoptosis occurs via a novel protein kinase A-independent signaling pathway. J Biol Chem 276: 45041–45050

    Article  PubMed  CAS  Google Scholar 

  191. Rossi AG, Cousin JM, Dransfield I, Lawson MF, Chilvers ER, Haslett C (1995) Agents that elevate cAMP inhibit human neutrophil apoptosis. Biochem Biophys Res Commun 217: 892–899

    Article  PubMed  CAS  Google Scholar 

  192. Rossi AG, McCutcheon JC, Roy N, Chilvers ER, Haslett C, Dransfield I (1998) Regulation of macrophage phagocytosis of apoptotic cells by cAMP. J Immunol 160: 3562–3568

    PubMed  CAS  Google Scholar 

  193. Walker A, Ward C, Dransfield I, Haslett C, Rossi AG (2003) Regulation of granulocyte apoptosis by hemopoietic growth factors, cytokines and drugs: potential relevance to allergic inflammation. Curr Drug Targets Inflamm Allergy 2: 339–347

    Article  PubMed  CAS  Google Scholar 

  194. Ward C, Walker A, Dransfield I, Haslett C, Rossi AG (2004) Regulation of granulocyte apoptosis by NF-kappaB. Biochem Soc Trans 32: 465–467

    Article  PubMed  CAS  Google Scholar 

  195. Krakstad C, Christensen AE, Doskeland SO (2004) cAMP protects neutrophils against TNF-{alpha}-induced apoptosis by activation of cAMP-dependent protein kinase, independently of exchange protein directly activated by cAMP (Epac). J Leukoc Biol 74: 641–

    Article  CAS  Google Scholar 

  196. Fadeel B, Kagan VE (2003) Apoptosis and macrophage clearance of neutrophils: regulation by reactive oxygen species. Redox Rep 8: 143–150

    Article  PubMed  CAS  Google Scholar 

  197. Jersmann HP, Ross KA, Vivers S, Brown SB, Haslett C, Dransfield I (2003) Phagocytosis of apoptotic cells by human macrophages: analysis by multiparameter flow cytometry. Cytometry 51A: 7–15

    Article  Google Scholar 

  198. Kopperud R, Krakstad C, Selheim F, Doskeland SO (2003) cAMP effector mechanisms. Novel twists for an ‘old’ signaling system. FEBS Lett 546: 121–126

    Article  PubMed  CAS  Google Scholar 

  199. Borisenko GG, Iverson SL, Ahlberg S, Kagan VE, Fadeel B (2004) Milk fat globule epidermal growth factor 8 (MFG-E8) binds to oxidized phosphatidylserine: implications for macrophage clearance of apoptotic cells. Cell Death Differ 11: 943–945

    Article  PubMed  CAS  Google Scholar 

  200. Arroyo A, Modriansky M, Serinkan FB (2002) NADPH oxidase-dependent oxidation and externalization of phosphatidylserine during apoptosis in Me2SO-differentiated HL-60 cells. Role in phagocytic clearance. J Biol Chem 277: 49965–49975

    Article  PubMed  CAS  Google Scholar 

  201. Kagan VE, Gleiss B, Tyurina YY (2002) A role for oxidative stress in apoptosis: oxidation and externalization of phosphatidylserine is required for macrophage clearance of cells undergoing Fas-mediated apoptosis. J Immunol 169: 487–499

    PubMed  CAS  Google Scholar 

  202. Tardieu D, Jaeg JP, Deloly A, Corpet DE, Cadet J, Petit CR (2000) The COX-2 inhibitor nimesulide suppresses superoxide and 8-hydroxy-deoxyguanosine formation, and stimulates apoptosis in mucosa during early colonic inflammation in rats. Carcinogenesis 21: 973–976

    Article  PubMed  CAS  Google Scholar 

  203. Wright CD, Kuipers PJ, Kobylarz-Singer D, Devall LJ, Klinkefus BA, Weishaar RE (1990) Differential inhibition of human neutrophil functions. Role of cyclic AMP-specific, cyclic GMP-insensitive phosphodiesterase. Biochem Pharmacol 40: 699–707

    Article  PubMed  CAS  Google Scholar 

  204. Vago T, Norbiato G, Baldi G, Chebat E, Bertora P, Bevilacqua M (1990) Respiratory-burst stimulants desensitize beta-2 adrenoceptors on human polymorphonuclear leukocytes. Int J Tissue React 12: 53–58

    PubMed  CAS  Google Scholar 

  205. Pryzwansky KB, Kidao S, Merricks EP (1998) Compartmentalization of PDE-4 and cAMP-dependent protein kinase in neutrophils and macrophages during phagocytosis. Cell Biochem Biophys 28: 251–275

    Article  PubMed  CAS  Google Scholar 

  206. Tool AT, Mul FP, Knol EF, Verhoeven AJ, Roos D (1996) The effect of salmeterol and nimesulide on chemotaxis and synthesis of PAF and LTC4 by human eosinophils. Eur Respir J (Suppl) 22: 141s–145s

    CAS  Google Scholar 

  207. Verhoeven AJ, Tool AT, Kuijpers TW, Roos D (1993) Nimesulide inhibits platelet-activating factor synthesis in activated human neutrophils. Drugs 46(Suppl 1): 52–58

    Article  PubMed  CAS  Google Scholar 

  208. Kumar A, Jain NK, Kulkarni SK (2000) Analgesic and anti-inflammatory effects of phosphodiesterase inhibitors. Indian J Exp Biol 38: 26–30

    PubMed  CAS  Google Scholar 

  209. Van Rensburg AJ, Theron AJ, Andreson R (1991) Comparison of the pro-oxidative interactions of flunoxaprofen and benoxaprofen with human polymophonuclear leucocytes in vitro. Agents Actions 33: 292–299

    Article  PubMed  Google Scholar 

  210. Ouellet M, Falgueyret JP, Percival MD (2004) Detergents profoundly affect inhibitor potencies against both cyclo-oxygenase isoforms. Biochem J 377: 675–684

    Article  PubMed  CAS  Google Scholar 

  211. Ouellet M, Percival MD (1995) Effect of inhibitor time-dependency on selectivity towards cyclooxygenase isoforms. Biochem J 306: 247–251

    PubMed  Google Scholar 

  212. Van Antwerpen P, Dubois J, Gelbcke M, Neve J (2004) The reactions of oxicam and sulfoanilide non steroidal anti-inflammatory drugs with hypochlorous acid: determination of the rate constants with an assay based on the competition with para-aminobenzoic acid chlorination and identification of some oxidation products. Free Radic Res 38: 251–258

    Article  PubMed  CAS  Google Scholar 

  213. Van Antwerpen P, Neve J (2004) In vitro comparative assessment of the scavenging activity against three reactive oxygen species of non-steroidal anti-inflammatory drugs from the oxicam and sulfoanilide families. Eur J Pharmacol 496: 55–61

    Article  PubMed  CAS  Google Scholar 

  214. Uddin MJ, Rao PN, Knaus EE (2003) Design and synthesis of novel celecoxib analogues as selective cyclooxygenase-2 (COX-2) inhibitors: replacement of the sulfonamide pharmacophore by a sulfonylazide bioisostere. Bioorg Med Chem 11: 5273–5280

    Article  PubMed  CAS  Google Scholar 

  215. Kiyama R, Tamura Y, Watanabe F, Tsuzuki H, Ohtani M, Yodo M (1999) Homology modeling of gelatinase catalytic domains and docking simulations of novel sulfonamide inhibitors. J Med Chem 42: 1723–1738

    Article  PubMed  CAS  Google Scholar 

  216. Levin JI, Chen JM, Cheung K, Cole D, Crago C, Santos ED, Du X, Khafizova G, MacEwan G, Niu C, Salaski EJ, Zask A, Cummons T, Sung A, Xu J, Zhang Y, Xu W, Ayral-Kaloustian S, Jin G, Cowling R, Barone D, Mohler KM, Black RA, Skotnicki JS (2003) Acetylenic TACE inhibitors. Part 1. SAR of the acyclic sulfonamide hydroxamates. Bioorg Med Chem Lett 13: 2799–2803

    Article  PubMed  CAS  Google Scholar 

  217. Supuran CT, Casini A, Scozzafava A (2003) Protease inhibitors of the sulfonamide type: anticancer, antiinflammatory, and antiviral agents. Med Res Rev 23: 535–558

    Article  PubMed  CAS  Google Scholar 

  218. Levin JI, Du MT (2003) Sulfonate ester hydroxamic acids as potent and selective inhibitors of TACE enzyme. Drug Des Discov 18: 123–126

    Article  PubMed  CAS  Google Scholar 

  219. Skotnicki JS, DiGrandi MJ, Levin JI (2003) Design strategies for the identification of MMP-13 and Tace inhibitors. Curr Opin Drug Discov Devel 6: 742–759

    PubMed  CAS  Google Scholar 

  220. Peyron P, Maridonneau-Parini I, Stegmann T (2001) Fusion of human neutrophil phagosomes with lysosomes in vitro: involvement of tyrosine kinases of the Src family and inhibition by mycobacteria. J Biol Chem 276: 35512–35517

    Article  PubMed  CAS  Google Scholar 

  221. Wilhelms OH, Linssen MJ, Lipponer L, Seilnacht W (1990) Nimesulide, indomethacin, BW 755 C, phenidon, mepacrin and nedocromil inhibit the activation of human and rat leucocytes. Int J Tissue React 12: 101–106

    PubMed  CAS  Google Scholar 

  222. de Mello SB, Laurindo IM, Cossermelli W (1994) Action of the 4-nitro-2-phenoximethanesulphonanilide (nimesulide) on neutrophil chemotaxis and superoxide production. Rev Paul Med 112: 489–494

    Google Scholar 

  223. Dallegri F, Ottonello L, Bevilacqua M (1995) Possible modes of action of nimesulide in controlling neutrophilic inflammation. Arzneimittelforschung 45: 1114–1117

    PubMed  CAS  Google Scholar 

  224. Ottonello L, Barbera P, Dapino P, Sacchetti C, Dallegri F (1997) Chemoattractant-induced release of elastase by lipopolysaccharide (LPS)-primed neutrophils; inhibitory effect of the anti-inflammatory drug nimesulide. Clin Exp Immunol 110: 139–143

    Article  PubMed  CAS  Google Scholar 

  225. Cronstein BN (1996) Molecular therapeutics. Methotrexate and its mechanism of action. Arthritis Rheum 39: 1951–1960

    Article  PubMed  CAS  Google Scholar 

  226. Cronstein BN (1997) The mechanism of action of methotrexate. Rheum Dis Clin North Am 23: 739–755

    Article  PubMed  CAS  Google Scholar 

  227. Cronstein BN, Montesinos MC, Weissmann G (1999) Salicylates and sulfasalazine, but not glucocorticoids, inhibit leukocyte accumulation by an adenosine-dependent mechanism that is independent of inhibition of prostaglandin synthesis and p105 of NFkappaB. Proc Natl Acad Sci USA 96: 6377–6381

    Article  PubMed  CAS  Google Scholar 

  228. Gadangi P, Longaker M, Naime D (1996) The anti-inflammatory mechanism of sulfasalazine is related to adenosine release at inflamed sites. J Immunol 156: 1937–1941

    PubMed  CAS  Google Scholar 

  229. Baggott JE, Morgan SL, Ha T, Vaughn WH, Hine RJ (1992) Inhibition of folate-dependent enzymes by non-steroidal anti-inflammatory drugs. Biochem J 282: 197–202

    PubMed  CAS  Google Scholar 

  230. Male D (2001) Cell migration and inflammation. In: Roitt I, Brostoff J, Male D (Eds): Immunology. Sixth Edition. Mosby, Edinburgh. 47–63

    Google Scholar 

  231. Auteri A, Saletti M, Blardi P, Di Perri T (1988) Action of a new non-steroid antiinflammatory drug, nimesulide, on activation of the complement system: an in vitro study. Int J Tissue React 10: 217–221

    PubMed  CAS  Google Scholar 

  232. Eibl G, Bruemmer D, Okada Y, Duffy JP, Law RE, Reber HA, Hines OJ (2002) PGE2 is generated by a specific COX-2 activity and increases VEGF production in COX-2-expressing human pancreatic cells. Biochem Biophys Res Commun 306: 887–897

    Article  CAS  Google Scholar 

  233. Amano H, Hayashi I, Toshida S, Yoshimura H, Majima M (2002) Cyclooxygenase-2 and adenylate cyclase/protein kinase A signaling pathway enhances angiogenesis through induction of vascular endothelial growth factor in sponge implants. Hum Cell 15: 13–24

    Article  PubMed  Google Scholar 

  234. Wang YQ, Luk JM, Ikeda K, Man K, Chu AC, Kaneda K, Fan ST (2004) Regulatory role of vHL/HIF-1alpha in hypoxia-induced VEGF production in heaptic stellate cells. Biochem Biophys Res Commun 317: 358–362

    Article  PubMed  CAS  Google Scholar 

  235. Tamarat R, Silvestre JS, Durie M, Levy BI (2002) Angiotensin II angiogenic effect in vivo involves vascular endothelial growth factor-and inflammation-related pathways. Lab Invest 82: 747–756

    PubMed  CAS  Google Scholar 

  236. Chen PY, Long QC (2004) Effects of cyclooxygenase 2 inhibitors on biological traits in nasopharyngeal carcinoma cells. Acta Pharmacol Sin 25: 943–949

    PubMed  CAS  Google Scholar 

  237. Woolf CJ, Salter MW (2000) Neuronal Plasticity: increasing the gain in pain. Science 288: 1765–1769

    Article  PubMed  CAS  Google Scholar 

  238. Vanegas H, Schaible H-G (2001) Prostaglandins and cyclooxygenases in the spinal cord. Prog Neurobiol 64: 327–363

    Article  PubMed  CAS  Google Scholar 

  239. Dolan S, Nolan AM (1990) N-methyl D-aspartate induced mechanical allodynia is blocked by nitric oxide synthase and cyclooxygenase-2 inhibitors. Neuroreport 10: 449–452

    Google Scholar 

  240. Meller ST, Gebhart GF (1993) Nitric oxide (NO) and nociceptive processing in the spinal cord. Pain 52: 127–136

    Article  PubMed  CAS  Google Scholar 

  241. Hao JX, Xu XJ (1996) Treatment of a chronic allodynia-like response in spinally injured rats: effects of systemically administered nitric oxide synthase inhibitors. Pain 66: 313–319

    Article  PubMed  CAS  Google Scholar 

  242. Pardutz A, Krizbai I, Multon S, Vecsei L, Schoenen J (2000) Systemic nitroglycerin increases nNOS levels in rat trigeminal nucleus caudalis. Neuroreport 11: 3071–3075

    Article  PubMed  CAS  Google Scholar 

  243. Wu J, Fang L, Lin Q, Willis WD (2000) Fos expression is induced by increased nitric oxide release in rat spinal cord dorsal horn. Neuroscience 96: 351–357

    Article  PubMed  CAS  Google Scholar 

  244. Jurna I, Brune K (1990) Central effect of the non-steroid anti-inflammatory agents, indomethacin, ibuprofen, and diclofenac, determined in C fibre-evoked activity in single neurones of the rat thalamus. Pain 41: 71–80

    Article  PubMed  CAS  Google Scholar 

  245. Bianchi M, Panerai AE (2001) Anti-hyperalgesic effects of lornoxicam, piroxicam, meloxicam, ketorolac and aspirin in rats. Br J Pharmacol 133(suppl 1): 51P

    Google Scholar 

  246. Tassorelli C, Greco R, Sandrini G, Nappi G (2003) Central components of the analgesic/antihyperalgesic effect of nimesulide: studies in animal models of pain and hyperalgesia. Drugs 63(suppl 1): 9–22

    Article  PubMed  CAS  Google Scholar 

  247. Bianchi M, Broggini M (2002) Anti-hyperalgesic effects of nimesulide: studies in rats and humans. Int J Clin Pract 128(suppl)11–19

    CAS  Google Scholar 

  248. Bianchi M, Panerai AE (1997) Formalin injection in the tail facilitates hindpaw withdrawal reflexes induced by thermal stimulation in the rat: effect of paracetamol. Neurosci Lett 237: 89–92

    Article  PubMed  CAS  Google Scholar 

  249. Biella G, Bianchi M, Sotgiu ML (1999) Facilitation of spinal sciatic neuron responses to hindpaw thermal stimulation after formalin injection in rat tail. Exp Brain Res 126:501–508

    Article  PubMed  CAS  Google Scholar 

  250. Baba H, Kohno T, Moore KA, Woolf CJ (2001) Direct activation of rat spinal dorsal horn neurons by prostaglandin E2. J Neurosci 21: 1750–1756

    PubMed  CAS  Google Scholar 

  251. Samad TA, Moore KA, Sapirstein A, Billet S, Allchorne A, Poole S, Bonventre JV, Woolf CJ (2001) Interleukin-1beta-mediated induction of Cox-2 in the CNS contributes to inflammatory pain hypersensitivity. Nature 410: 471–475

    Article  PubMed  CAS  Google Scholar 

  252. Sorkin LS, Moore JH (1996) Evoked release of amino acids and prostanoids in spinal cords of anesthetized rats: changes during peripheral inflammation and hyperalgesia. Am J Ther 3: 268–275

    Article  PubMed  Google Scholar 

  253. Dirig DM, Konin GP, Isakson PC, Yaksh TL (1997) Effect of spinal cyclooxygenase inhibitors in rat using the formalin test and in vitro prostaglandin E2 release. Eur J Pharmacol 331: 155–160

    Article  PubMed  CAS  Google Scholar 

  254. Yamamoto T, Sakashita Y (1998) COX-2 inhibitor prevents the development of hyperalgesia induced by intrathecal NMDA or AMPA. Neuroreport 9: 3869–3873

    PubMed  CAS  Google Scholar 

  255. Bianchi M, Limiroli E, Ferrario P, Sacerdote P (2001) Anti-hyperalgesic effects of lornoxicam in the rat: behavioural and biochemical evidence. Inflamm Res 5(suppl 3): S207

    Google Scholar 

  256. McCormack KJ (1994) Non-steroidal anti-inflammatory drugs and spinal nociceptive processes. Pain 59: 9–43

    Article  PubMed  CAS  Google Scholar 

  257. Brune K, Beck WS, Geisslinger G, Menzel-Soglowski S, Peskar BM, Peskar, BA (1991) Aspirin-like drugs may block pain independently of prostaglandin synthesis inhibition. Experientia 47: 257–261

    Article  PubMed  CAS  Google Scholar 

  258. McCormack KJ (1994) The spinal action of NSAIDs and the dissociation between anti-inflammatory and analgesic effects. Drugs 47: 28–45

    Article  PubMed  CAS  Google Scholar 

  259. Hay CH, Trevethick MA, Wheeldon A, Bowers JS, de Belleroche JS (1997) The potential role of spinal cord cyclooxygenase-2 in the development of Freund’s complete adjuvant-induced changes in hyperalgesia and allodynia. Neuroscience 78: 843–850

    Article  PubMed  CAS  Google Scholar 

  260. Stein C, Millan MJ, Herz A (1988) unilateral inflammation of the hindpaw in rats as a model of prolonged noxious stimulation: alterations in behaviour and nociceptive thresholds. Pharmacol Biochem Behav 31: 315–324

    Article  Google Scholar 

  261. Ferreira SH, Nakamura M (1979) III — Prostaglandin hyperalgesia: relevance of the peripheral effect for the analgesic action of opioid-antagonists. Prostaglandins 18: 201–208

    Article  PubMed  CAS  Google Scholar 

  262. Ferreira SH, Lorenzetti BB, De Campos DI (1990) Induction, blockade and restoration of a persistent hypersensitive state. Pain 42: 365–371

    Article  PubMed  CAS  Google Scholar 

  263. Kumazawa T, Mizumura K, Koda H (1993) Involvement of EP3 subtype of prostaglandin E receptors in PGE2-induced enhancement of the bradykinin response of nociceptors. Brain Res 632: 321–324

    Article  PubMed  CAS  Google Scholar 

  264. Anderson GD, Hauser SD, McGarity KL, Bremer ME, Isakson PC, Gregory SA (1996) Selective inhibition of cyclooxygenase (COX)-2 reverses inflammation and expression of COX-2 and interleukin 6 in rat adjuvant arthritis. J Clin Invest 97: 2672–2679

    Article  PubMed  CAS  Google Scholar 

  265. Tassorelli C, Joseph SA (1995) Systemic nitroglycerin induces Fos immunoreactivity in brainstem and forebrain structures of the rat. Brain Res 682: 167–178

    Article  PubMed  CAS  Google Scholar 

  266. Tassorelli C, Joseph SA, Buzzi G, Nappi G (1999) The effect on the central nervous system of nitroglycerin — Putative mechanisms and mediators. Prog Neurobiol 57: 606–624

    Article  Google Scholar 

  267. Tassorelli C, Joseph SA, Nappi G (1997) Neurochemical mechanisms of nitroglycerin-induced neuronal activation. Neuropharmacology 10: 1417–1424

    Article  Google Scholar 

  268. Tassorelli C, Greco R, Morocutti A, Costa A, Nappi G (2001) Nitric oxide-induced neuronal activation in the central nervous system as an animal model for migraine: mechanisms and mediators. Funct Neurol 16(suppl 4): 69–76

    PubMed  CAS  Google Scholar 

  269. Tassorelli C, Greco R, Wang DC, Sandrini M, Sandrini G, Nappi G (2003) Nitroglycerin induces hyperalgesia in rats — a time-course study. Eur J Pharmacol 464: 159–162

    Article  PubMed  CAS  Google Scholar 

  270. Jones MG, Lever I, Bingham S, Read S, McMahon SB, Parsons A (2001) Nitric oxide potentiates response of trigeminal neurones to dural or facial stimulation in the rat. Cephalalgia 21: 643–655

    Article  PubMed  CAS  Google Scholar 

  271. Reuter U, Chiarugi A, Bolay H, Moskowitz MA (2002) Nuclear factor-kappaB as a molecular target for migraine therapy. Ann Neurol 51: 507–516

    Article  PubMed  CAS  Google Scholar 

  272. Torfgard K, Ahnler J, Axelsson KL, Norlander B, Bertler A (1989) Tissue distribution of glyceryl trinitrate and the effect on cGMP levels in rat. Pharmacology & Toxicology 64: 369–372

    Article  CAS  Google Scholar 

  273. Mashimo T, Pak M, Choe H, Inagaki Y, Yamamoto M, Yoshiya I (1997) Effects of vasodilators guanethidine, nicardipine, nitroglycerin, and prostaglandin E1 on primary afferent nociceptors in humans. J Clin Pharmacol 37: 330–335

    PubMed  CAS  Google Scholar 

  274. Tjolsen A, Berge OG, Hunskaar S, Rosland JH, Hole K (1992) The formalin test: an evaluation of the method. Pain 51: 5–17

    Article  PubMed  CAS  Google Scholar 

  275. Taniguchi Y, Yokoyama K, Inui K, Deguchi Y, Furukawa K, Noda K (1997) Inhibition of brain cyclooxygenase-2 activity and the antipyretic action of nimesulide. Eur J Pharmacol 330: 221–229

    Article  PubMed  CAS  Google Scholar 

  276. Coderre TJ, Katz J, Vaccarino AL, Melzack R (1993) Contribution of central neuroplasticity to pathological pain: review of clinical and experimental evidence. Pain 52: 259–285

    Article  PubMed  CAS  Google Scholar 

  277. Sasaki M, Tohda C, Kuraishi Y (1998) Region-specific increase in glutamate release from dorsal horn of rats with adjuvant inflammation. Neuroreport 9: 3219–3122

    PubMed  CAS  Google Scholar 

  278. DeGroot J, Zhow S, Carlton SM (2000) Peripheral glutamate release in the hind paw following low and high intensity sciatic stimulation. Neuroreport 14: 497–502

    Google Scholar 

  279. Lawand NB, McNearney T, Westlund KN (2000) Amino acid release into the knee joint: key role in nociception and inflammation. Pain 86: 69–74

    Article  PubMed  CAS  Google Scholar 

  280. Tegeder I, Niederberger E, Vetter G, Brauitigam L, Geisslinger G (2001) Effects of selective COX-1 and-2 inhibition on formalin-evoked nociceptive behaviour and prostaglandin E2 release in the spinal cord. J Neurochem 79: 777–786

    Article  PubMed  CAS  Google Scholar 

  281. Beiche F, Geisslinger G, Goppelt-Struebe M (1988) Expression of cyclooxygenase isoforms in the rat spinal cord and their regulation during adjuvant-induced arthritis. Inflamm Res 47: 482–487

    Article  Google Scholar 

  282. Maihofner C, Tegeder I, Euchenhofer C, deWitt D, Brune K, Bang R, Neuhunber W, Geisslinger G (2000) Localization and regulation of cyclo-oxygenase-1 and-2 and neuronal nitric oxide synthase in mouse spinal cord. Neuroscience 101: 1093–1108

    Article  PubMed  CAS  Google Scholar 

  283. Ferreira SH, Lorenzetti BB (1996) Intrathecal administration of prostaglandin E2 causes sensitization of the primary afferent neuron via the spinal release of glutamate. Inflamm Res 45: 499–502

    Article  PubMed  CAS  Google Scholar 

  284. Kawamata T, Omote K (1999) Activation of spinal N-methyl-D-aspartate receptor stimulates a nitric oxide/cyclic guanosine 3,5-monophosphate/glutamate release cascade in nociceptive signaling. Anesthesiology 91: 1415–1424

    Article  PubMed  CAS  Google Scholar 

  285. Sakurada C, Sugiyama A, Nakayama M, Yonezawa A, Sakurada S, Tan-No K, Kisara K, Sakurada Y (2001) Antinociceptive effect of spinally injected L-NAME on the acute nociceptive response induced by low concentrations of formalin. Neurochem Int 38: 417–423

    Article  PubMed  CAS  Google Scholar 

  286. Kaube H, Hoskin HL, Goadsby PJ (1993) Intravenous acetylsalicylic acid inhibits central trigeminal neurons in the dorsal horn of the upper cervical spinal cord in the cat. Headache 33: 541–544

    Article  PubMed  CAS  Google Scholar 

  287. Sandrini M, Vitale G, Pini LA (2002) Central antinociceptive activity of acetylsalicylic acid is modulated by brain serotonin receptor subtypes. Pharmacology 65: 193–197

    Article  PubMed  CAS  Google Scholar 

  288. Willer JC (1990) Clinical exploration of nociception with the use of reflexologic techniques. Neurophysiol Clin 20: 335–356

    Article  PubMed  CAS  Google Scholar 

  289. Sandrini G, Arrigo A, Bono G, Nappi G (1993) The nociceptive flexion reflex as a tool for exploring pain control systems in headache and other pain syndromes. Cephalalgia 13: 21–27

    Article  PubMed  CAS  Google Scholar 

  290. Sandrini G, Alfonsi E, Bono G, Facchinetti F, Montalbetti L, Nappi G (1986) Circadian variations of human flexion reflex. Pain 25: 403–410

    Article  PubMed  CAS  Google Scholar 

  291. Sandrini G, Ruiz L, Capararo M, Garofoli F, Beretta A, Nappi G (1992) Central analgesic activity of ibuprofen. A neurophysiological study in humans. Int J Clin Pharmacol Res 12: 197–204

    PubMed  CAS  Google Scholar 

  292. Willer JC (1985) Studies on pain: Effects of morphine on a spinal nociceptive flexion reflex and related pain sensation in man. Brain Res 331: 105–114

    Article  PubMed  CAS  Google Scholar 

  293. Sandrini G, Proietti Cecchini A, Alfonsi E, Nappi G (2001) The effectiveness of nimesulide in pain. A neurophysiological study in humans. Drugs of Today 37(suppl B): 21–29

    CAS  Google Scholar 

  294. Sandrini G, Tassorelli C, Cecchini AP, Alfonsi E, Nappi G (2002) Effects of nimesulide on nitric oxide-induced hyperalgesia in humans — a neurophysiological study. Eur J Pharmacol 450: 259–262

    Article  PubMed  CAS  Google Scholar 

  295. Willer JC, De Broucker T, Bussel B, Roby-Brami A, Harrewyn JM (1989) Central analgesic effect of ketoprofen in humans: electrophysiological evidence for a supraspinal mechanism in a double-blind and cross-over study. Pain 38: 1–7

    Article  PubMed  CAS  Google Scholar 

  296. Cooke TDV (1985) Mechanisms of cartilage degradation: relation to choice of therapeutic agent. Semin Arthritis Rheum 15(2 Suppl 1): 16–23

    PubMed  CAS  Google Scholar 

  297. Burkhardt D, Ghosh P (1987) Laboratory evaluation of antiarthritic drugs as potential chondroprotective agents. Semin Arthritis Rheum 17(2 Suppl 1): 3–34

    PubMed  CAS  Google Scholar 

  298. Doherty M (1989) ‘Chondroprotection’ by non-steroidal anti-inflammatory drugs. Ann Rheum Dis 48: 619–621

    Article  PubMed  CAS  Google Scholar 

  299. Ghosh P, Wells C, Smith M, Hutadilok N (1990) Chondroprotection, myth or reality: An experimental approach. Semin Arthritis Rheum 19(4 Suppl 1): 3–9

    Article  PubMed  CAS  Google Scholar 

  300. Rainsford KD, Rashad SY, Revell PA, Low FM, Hemingway AP, Walker FS, Johnson D, Stetsko P, Ying C, Smith F (1992) Effects of NSAIDs on cartilage proteoglycan and synovial prostaglandin metabolism in relation to progression of joint deterioration in osteoarthritis. In: Bálint G, Gömör B, Hadinka L (Eds): Rheumatology, State of the Art. Elsevier, Amsterdam. 177–183

    Google Scholar 

  301. Rashad S, Rainsford K, Revell P, Low F, Hemingway A, Walker F (1992) The effects of NSAIDS on the course of osteoarthritis. In: Bélint G, Gömör B, Hódinka L (Eds): Rheumatology, State of the Art. Elsevier, Amsterdam. 184–188

    Google Scholar 

  302. Jones AC, Doherty M (1992) The treatment of osteoarthritis. Br J Clin Pharmacol 33: 357–363

    PubMed  CAS  Google Scholar 

  303. Brandt KD (1993) Should osteoarthritis be treated with nonsteroidal anti-inflammatory drugs? Rheum Dis Clin North Am 19: 697–712

    PubMed  CAS  Google Scholar 

  304. Brandt KD (1993) NSAIDs in the treatment of osteoarthritis. Friends or foes? Bull Rheum Dis 42: 1–4

    PubMed  CAS  Google Scholar 

  305. Jobanputra P, Nuki G (1994) Nonsteroidal anti-inflammatory drugs in the treatment of osteoarthritis. Curr Opin Rheumatol 6: 433–439

    Article  PubMed  CAS  Google Scholar 

  306. Brady SJ, Brooks P, Conaghan P, Kenyon LM (1997) Pharmacotherapy and osteoarthritis. Baillieres Clin Rheumatol 11: 749–768

    Article  PubMed  CAS  Google Scholar 

  307. Buckland-Wright C (1999) Evaluation of disease progression during nonsteroidal antiinflammatory drug treatment: imaging X-rays. Osteoarthritis Cartilage 7: 343–344

    Article  PubMed  CAS  Google Scholar 

  308. Dougados M (2001) The role of anti-inflammatory drugs in the treatment of osteoarthritis: a European viewpoint. Clin Exp Rheumatol 19(6 Suppl 25): S9–14

    PubMed  CAS  Google Scholar 

  309. Ding C (2002) Do NSAIDs affect the progression of osteoarthritis? Inflammation 26: 139–142

    Article  PubMed  CAS  Google Scholar 

  310. Dieppe P, Brandt KD (2003) What is important in treating osteoarthritis? Whom should we treat and how should we treat them? Rheum Dis Clin North Am 29: 687–716

    Article  PubMed  Google Scholar 

  311. Dieppe P, Bartlett C, Davey P, Doyal L, Ebrahim S (2004) Balancing benefits and harms: the example of non-steroidal anti-inflammatory drugs. Br Med J 329: 31–34

    Article  CAS  Google Scholar 

  312. Tindall EA, Sharp JT, Burr A, Katz TK, Wallemark CB, Verburg K, Lefkowith JB (2002) A 12-month, multicenter, prospective, open-label trial of radiographic analysis of disease progression in osteoarthritis of the knee or hip in patients receiving celecoxib. Clin Ther 24: 2051–2063

    Article  PubMed  Google Scholar 

  313. Gandy SJ, Dieppe PA, Keen MC, Maciewicz RA, Watt I, Waterton JC (2002) No loss of cartilage volume over three years in patients with knee osteoarthritis as assessed by magnetic resonance imaging. Osteoarthritis Cartilage 10: 929–937

    Article  PubMed  CAS  Google Scholar 

  314. Gineyts E, Mo JA, Ko A, Henriksen DB, Curtis SP, Gertz BJ, Garnero P, Delmas PD (2004) Effects of ibuprofen on molecular markers of cartilage and synovium turnover in patients with knee osteoarthritis. Ann Rheum Dis 63: 857–861

    Article  PubMed  CAS  Google Scholar 

  315. Abadie E, Ethgen D, Avouac B, Bouvenot G, Branco J, Bruyere O, Calvo G, Devogelaer JP, Dreiser RL, Herrero-Beaumont G et al. Group for the Respect of Excellence and Ethics in Science (2004) Recommendations for the use of new methods to assess the efficacy of disease-modifying drugs in the treatment of osteoarthritis. Osteoarthritis Cartilage 12: 263–268

    Article  PubMed  Google Scholar 

  316. Murray RO (1976) Iatrogenic lesions of the skeleton. Caldwell lecture, 1975. Am J Roentgenol 126: 5–22

    CAS  Google Scholar 

  317. Allen EH, Murray RO (1971) Iatrogenic arthropathies. Eur Assoc Radiol Practice. Excerpta Medica 249: 204–210

    Google Scholar 

  318. Coke H (1967) Long-term indomethacin therapy of coxarthrosis. Ann Rheum Dis 26: 346–347

    Google Scholar 

  319. Goldie I (1978) Osteonekros och indomethacin Läkartidningen 75: 1275–1277

    PubMed  CAS  Google Scholar 

  320. Hauge MF (1975) Hofteleddsartrose-indomethacin. Tidsskr Nor Laegeforen 95: 1594–1603

    PubMed  CAS  Google Scholar 

  321. Serup J, Ovesen JO (1981) Salicylate-arthropathy. Accelerated coxarthrosis during long-term treatment with acetylsalicylic acid. Schweiz Rundsch Med Prax 70: 359–361

    PubMed  CAS  Google Scholar 

  322. Rashad S, Revell P, Hemingway A, Low F, Rainsford K, Walker FS (1989) Effect of nonsteroidal anti-Inflammatory drugs on the course of osteoarthritis. Lancet 2, 519–522

    Article  PubMed  CAS  Google Scholar 

  323. Mastbergen SC, Lafeber FP, Bijlsma JW (2002) Selective COX-2 inhibition prevents proinflammatory cytokine-induced cartilage damage. Rheumatology 41: 801–808

    Article  PubMed  CAS  Google Scholar 

  324. Hardy MM, Seibert K, Manning PT, Currie MG, Woerner BM, Edwards D, Koki A, Tripp CS (2002) Cyclooxygenase 2-dependent prostaglandin E2 modulates cartilage proteoglycan degradation in human osteoarthritis explants. Arthritis Rheum 46: 1789–1803

    Article  PubMed  CAS  Google Scholar 

  325. El Hajjaji H, Marcelis A, Devogelaer JP, Manicourt DH (2003) Celecoxib has a positive effect on the overall metabolism of hyaluronan and proteoglycans in human osteoarthritic cartilage. J Rheumatol 30: 2444–2451

    PubMed  Google Scholar 

  326. Sylvia VL, Del Toro F Jr, Hardin RR, Dean DD, Boyan BD, Schwartz Z (2001) Characterization of PGE2 receptors (EP) and their role as mediators of 1alpha,25-(OH)(2)D(3) effects on growth zone chondrocytes. J Steroid Biochem Mol Biol 78: 261–274

    Article  PubMed  CAS  Google Scholar 

  327. Miyamoto M, Ito, H, Kobayashi T, Yamamoto H, Kobayashi M, Maruyama T, Akiyama H, Nakamura T (2003) Simultaneous stimulation of EP2 and EP4 is essential to the effect of prostaglandin E2 in chondrocyte differentiation. Osteoarthritis Cartilage 11: 644–652

    Article  PubMed  CAS  Google Scholar 

  328. de Brum-Fernandes AJ, Morisset S, Bkaily G, Patry C (1996) Characterization of the PGE2 receptor subtype in bovine chondrocytes in culture. Br J Pharmacol 118: 1597–1604

    PubMed  Google Scholar 

  329. Amin AR, Attur M, Patel RN, Thakker GD, Marshall PJ, Rediske J, Stukin SA, Patel IR, Abramson SB (1997) Superinduction of cyclooxygenase-2_activity in human osteoarthritic affected cartilage. J Clin Invest 99: 1231–1237

    Article  PubMed  CAS  Google Scholar 

  330. Amin AR, Attur M, Abramson SB (1998) Regulation of nitric oxide and inflammatory mediators in human osteoarthritic-affected cartilage: implication for pharmacological intervention. In: Rubanyl GW (Ed): The Pathophysiological and Clinical Application of Nitric Oxide. Harvard Academic Publishers, Boston. 397–412

    Google Scholar 

  331. Goldring MB, Berenbaum F, Buckwalter J (2004) The regulation of chondrocyte function by proinflammatory mediators: prostaglandins and nitric oxide. Clin Orthop 427(Suppl): S37–S46

    PubMed  Google Scholar 

  332. Clausen PA, Flechtenmacher J, Haeuselmann HJ, Kuettner KE, Aydelotte MB, Iyer AP (1996) Evidence of an eicosanoid contribution to IL-1_induction of IL-6_in human artcular chondrocytes. Am J Ther 3: 101–108

    Article  PubMed  Google Scholar 

  333. Woolley DE, Tetlow LC (2000) Mast cell activation and its relation to proinflammatory cytokine production in rheumatoid lesion. Arthritis Res 2: 65–74

    Article  PubMed  CAS  Google Scholar 

  334. Kerr JS, Stevens TM, Davis GL, McLaughlin JA, Harris RR (1989) Effects of recombinant interleukin-1 beta on phospholipase activity, phospholipase A2 mRNA, and eicosanoid formation in rabbit chondrocytes. Biochem Biophys Res Commun 29: 1079–1084

    Article  Google Scholar 

  335. Martel-Pelletier J, Mineau F, Fahmi H, Laufer S, Reboul P, Boileau C, Lavigne M, Pelletier JP (2004) Regulation of the expression of 5-lipoxygenase-activating protein/ 5-lipoxygenase and the synthesis of leukotriene B4in osteoarthritic chondrocytes: role of transforming growth factor beta and eicosanoids. Arthritis Rheum 50: 3925–3933

    Article  PubMed  CAS  Google Scholar 

  336. Amat M, Diaz C, Vila L (1998) Leukotriene A4 hydrolase and leukotriene C4 synthase activities in human chondrocytes: transcellular biosynthesis of leukotrienes during granulocyte-chondrocyte interaction. Arthritis Rheum 41: 1645–1651

    Article  PubMed  CAS  Google Scholar 

  337. Rouzer CA, Kargmann S (1988) Translocation of 5-lipoxygenase to the membrane in human leucocytes challenged with ionophore A23187. J Biol Chem 263: 10980–10988

    PubMed  CAS  Google Scholar 

  338. Serhan CN (1997) Lipoxins and novel aspirin-triggered 15-epi-lipoxins (ATL): a jungle of cell-cell interactions or a therapeutic opportunity? Prostaglandins 53: 107–137

    Article  PubMed  CAS  Google Scholar 

  339. Brandwein SR (1986) Regulation of interleukin 1 production by mouse peritoneal macrophages. Effects of arachidonic acid metabolites, cyclic nucleotides, and interferons. J Biol Chem 261: 8624–8632

    PubMed  CAS  Google Scholar 

  340. Brandwein SR (1990) Differential regulation of soluble interleukin 1 release and membrane expression by pharmacologic agents. Agents Actions 30: 381–392

    Article  PubMed  CAS  Google Scholar 

  341. Bonta IL, Elliott GR (1992) Non-steroidal anti-inflammatory drugs and the augmented lipoxygenase pathways: conceivable impact on joints. In: Rainsford KD, Velo GP (Eds): Side-effects of Anti-inflammatory Drugs 3. Kluwer Academic Publishers, Dordrecht. 269–274

    Google Scholar 

  342. Swierkosz TA, Mitchell JA, Warner TD, Botting RM, Vane JR (1995) Co-induction of nitric oxide synthase and cyclooxygenase: interactions between nitric oxide and prostanoids. Br J Pharmacol 114: 1335–1342

    PubMed  CAS  Google Scholar 

  343. Sanchez de Miguel L, de Frutos T, Gonzalez-Fernandez F, del Pozo V, Lahoz C, Jimenez A, Rico L, Garcia R, Aceituno E, Millas I et al. (1999) Aspirin inhibits inducible nitric oxide synthase expression and tumour necrosis factor-alpha release by cultured smooth muscle cells. Eur J Clin Invest 29: 93–99

    Article  PubMed  CAS  Google Scholar 

  344. Wang ZY, Brecher P (1999) Salicylate inhibition of extracellular signal-related kinases and inducible nitric oxide synthase. Hypertension 34: 1259–1264

    PubMed  CAS  Google Scholar 

  345. Rola-Pleszczynski M, Thivierge M, Gagnon N, Lacasse C, Stankova J (1993) Differential regulation of cytokine and cytokine receptor genes by PAF, LTB4 and PGE2. J Lipid Mediat 6:175–181

    PubMed  CAS  Google Scholar 

  346. Harbrecht BG, Kim YM, Wirant EM, Shapiro RA, Billiar TR (1996) PGE2 and LTB4 inhibit cytokine-stimulated nitric oxide synthase type 2 expression in isolated rat hepatocytes. Prostaglandins 52: 103–116

    Article  PubMed  CAS  Google Scholar 

  347. Harizi H, Norbert G (2004) Inhibition of IL-6, TNF-alpha, and cyclooxygenase-2 protein expression by prostaglandin E2-induced IL-10 in bone marrow-derived dendritic cells. Cell Immunol 228: 99–109

    Article  PubMed  CAS  Google Scholar 

  348. Fleming DC, Kelly RW (2004) Prostaglandins and the immune response. In: Curtis-Prior P (Ed): The Eicosanoids. Wiley, Chichester. 237–245

    Chapter  Google Scholar 

  349. Rainsford KD (2004) Cytokines and eicosanoids in arthritis. In: Curtis-Prior P (Ed): The Eicosanoids. Wiley, Chichester. 347–358

    Chapter  Google Scholar 

  350. Stamp LK, Cleland LG, James MJ (2004) Upregulation of synoviocyte COX-2 through interactions with T lymphocytes: role of interleukin 17 and tumor necrosis factor-alpha. J Rheumatol 31: 1246–1254

    PubMed  CAS  Google Scholar 

  351. Arend WP (2001) Cytokine imbalance in the pathogenesis of rheumatoid arthritis: the role of interleukin-1 receptor antagonist. Semin Arthritis Rheum 30(Suppl 2): 1–6

    Article  PubMed  CAS  Google Scholar 

  352. van Roon JA, Bijlsma JW, Lafeber FP (2002) Suppression of inflammation and joint destruction in rheumatoid arthritis may require a concerted action of Th2 cytokines. Curr Opin Investig Drugs 3: 1011–1016

    PubMed  Google Scholar 

  353. Taylor PC (2003) Anti-cytokines and cytokines in the treatment of rheumatoid arthritis. Curr Pharm Des 9:1095–1106

    Article  PubMed  CAS  Google Scholar 

  354. Kato T, Xiang Y, Nakamura H, Nishioka K (2004) Neoantigens in osteoarthritic cartilage. Curr Opin Rheumatol 16: 604–608

    Article  PubMed  CAS  Google Scholar 

  355. Ghosh P, Cheras PA (2001) Vascular mechanisms in osteoarthritis. Best Pract Res Clin Rheumatol 15: 693–709

    Article  PubMed  CAS  Google Scholar 

  356. Burr DB (1998) The importance of subchondral bone in osteoarthrosis. Curr Opin Rheumatol 10: 256–262

    Article  PubMed  CAS  Google Scholar 

  357. Wilbrink B, Nietfeld JJ, den Otter W, van Roy JL, Bijlsma JW, Huber-Bruning O (1991) Role of TNF alpha, in relation to IL-1 and IL-6 in the proteoglycan turnover of human articular cartilage. Br J Rheumatol 30: 265–271

    Article  PubMed  CAS  Google Scholar 

  358. Neidel J, Zeidler U (1993) Independent effects of interleukin 1 on proteoglycan synthesis and proteoglycan breakdown of bovine articular cartilage in vitro. Agents Actions 39: 82–90

    Article  PubMed  CAS  Google Scholar 

  359. Sakkas LI, Platsoucas CD (2002) Role of T cells in the pathogenesis of osteoarthritis. Arthritis Rheum 46: 3112–3113

    Article  PubMed  Google Scholar 

  360. Haynes MK, Hume EL, Smith JB (2002) Phenotypic characterization of inflammatory cells from osteoarthritic synovium and synovial fluids. Clin Immunol 105: 315–325

    Article  PubMed  CAS  Google Scholar 

  361. Sakata M, Masuko-Hongo K, Nakamura H, Onuma H, Tsuruha JI, Aoki H, Nishioka K, Kato T (2003) Osteoarthritic articular chondrocytes stimulate autologous T cell responses in vitro. Clin Exp Rheumatol 21: 704–710

    PubMed  CAS  Google Scholar 

  362. Haynes DR, Crotti TN (2003) Regulation of bone lysis in inflammatory diseases. Inflammopharmacology 11: 323–331

    Article  PubMed  Google Scholar 

  363. Martel-Pelletier J, Di Battista JA, Lajeunesse D, Pelletier JP (1998) IGF/IGFBP axis in cartilage and bone in osteoarthritis pathogenesis. Inflamm Res 1998 Mar; 47: 90–100

    Article  CAS  Google Scholar 

  364. Rainsford KD, Omar H, Ashraf A, Hewson AT, Bunning RAD, Rishiraj R, Shepherd P, Seabrook RW (2002) Recent pharmacodynamic and pharmacokinetic findings on oxaprozin. Inflammopharmacology 10: 185–239

    Article  CAS  Google Scholar 

  365. Dingle JT, Parker M (1997) NSAID stimulation of human cartilage matrix synthesis. Clin Drug Invest 14: 353–362

    Article  CAS  Google Scholar 

  366. Glazer PA, Rosenwasser MP, Ratcliffe A (1993) The effect of naproxen and interleukin-1 on proteoglycan catabolism and on neutral metalloproteinase activity in normal cartilage in vitro. J Clin Pharmacol 33: 109–114

    PubMed  CAS  Google Scholar 

  367. Rainsford KD (1992) Effects of anti-inflammatory drugs and agents that modify signal transduction signals or metabolic activities on interleukin 1-induced cartilage proteoglycan resorption in vitro. Pharmacol Res 25: 335–346

    Article  PubMed  CAS  Google Scholar 

  368. Rainsford KD, Ying C, Smith FC (1997) Effects of meloxicam compared with other NSAIDs on proteoglycan metabolism, synovial prostaglandin E2, interleukins-1, 6 and 8 production, in human and porcine explants in organ culture. J Pharm Pharmacol 49: 991–998

    PubMed  CAS  Google Scholar 

  369. Blot L, Marcelis A, Devogelaer JP, Manicourt DH (2000) Effects of diclofenac, aceclofenac and meloxicam on the metabolism of proteoglycans and hyaluronan in osteoarthritic human cartilage. Br J Pharmacol 131: 1413–1421

    Article  PubMed  CAS  Google Scholar 

  370. Choi JH, Choi JH, Kim DY, Yoon JH, Youn HY, Yi JB, Rhee HI, Ryu KH, Jung K, Han CK et al. (2002) Effects of SKI 306X, a new herbal agent, on proteoglycan degradation in cartilage explant culture and collagenase-induced rabbit osteoarthritis model. Osteoarthritis Cartilage 10: 471–478

    Article  PubMed  Google Scholar 

  371. El Hajjaji H, Marcelis A, Devogelaer JP, Manicourt DH (2003) Celecoxib has a positive effect on the overall metabolism of hyaluronan and proteoglycans in human osteoarthritic cartilage. J Rheumatol 30: 2444–2451

    PubMed  Google Scholar 

  372. Fossati A (1999) Antiinflammatory effects of Seaprose-S on various inflammation models. Drugs Exp Clin Res 25: 263–270

    PubMed  CAS  Google Scholar 

  373. Frean SP, Abraham LA, Lees P (1999) In vitro stimulation of equine articular cartilage proteoglycan synthesis by hyaluronan and carprofen. Res Vet Sci 67: 183–190

    Article  PubMed  CAS  Google Scholar 

  374. Ghosh P, Hutadilok N (1996) Interactions of pentosan polysulfate with cartilage matrix proteins and synovial fibroblasts derived from patients with osteoarthritis. Osteoarthritis Cartilage 4: 43–53

    Article  PubMed  CAS  Google Scholar 

  375. Hardy MM, Seibert K, Manning PT, Currie MG, Woerner BM, Edwards D, Koki A, Tripp CS (2002) Cyclooxygenase 2-dependent prostaglandin E2 modulates cartilage proteoglycan degradation in human osteoarthritis explants. Arthritis Rheum 46: 1789–1803

    Article  PubMed  CAS  Google Scholar 

  376. Henrotin YE, Labasse AH, Simonis PE, Zheng SX, Deby GP, Famaey JP, Crielaard JM, Reginster JY (1999) Effects of nimesulide and sodium diclofenac on interleukin-6, interleukin-8, proteoglycans and prostaglandin E2 production by human articular chondrocytes in vitro. Clin Exp Rheumatol 17: 151–160

    PubMed  CAS  Google Scholar 

  377. Lafeber FP, Beukelman CJ, van den Worm E, van Roy JL, Vianen ME, van Roon JA, van Dijk H, Bijlsma JW (1999) Apocynin, a plant-derived, cartilage-saving drug, might be useful in the treatment of rheumatoid arthritis. Rheumatology (Oxford) 38: 1088–1093

    Article  CAS  Google Scholar 

  378. Mastbergen SC, Lafeber FP, Bijlsma JW (2002) Selective COX-2 inhibition prevents proinflammatory cytokine-induced cartilage damage. Rheumatology (Oxford) 41: 801–808

    Article  CAS  Google Scholar 

  379. Rainsford KD, Skerry TM, Chindemi P, Delaney K (1999) Effects of the NSAIDs meloxicam and indomethacin on cartilage proteoglycan synthesis and joint responses to calcium pyrophosphate crystals in dogs. Vet Res Commun 23: 101–113

    Article  PubMed  CAS  Google Scholar 

  380. Bassleer C, Magotteaux J, Geenen V, Malaise M (1997) Effects of meloxicam compared to acetylsalicylic acid in human articular chondrocytes. Pharmacology. 54:49–56

    Article  PubMed  CAS  Google Scholar 

  381. Beluche LA, Bertone AL, Anderson DE, Rohde C (2001) Effects of oral administration of phenylbutazone to horses on in vitro articular cartilage metabolism. Am J Vet Res 62: 1916–1921

    Article  PubMed  CAS  Google Scholar 

  382. Rainsford KD, Davies A, Mundy L, Ginsburg I (1998) Comparative effects of azapropazone on cellular events at inflamed sites. Influence on joint pathology, leucocyte superoxide and eicosanoid production and actions on interleukin-1 — induced cartilage resorption correlated with drug uptake into cartilage in vitro. J Pharma Pharmacol 41: 322–330

    Google Scholar 

  383. Rainsford KD, Ying C, Smith FC (1996) Effects of 5-lipoxygenase inhibitors on interleukin-1 production by human synovial tissues in organ culture: comparison with interleukin-1 synthesis inhibitors. J Pharm Pharmacol 48: 45–50

    Google Scholar 

  384. Walker FS, Rainsford KD (1997) Do NSAIDS adversely affect joint pathology in osteoarthritis? In: KD Rainsford (ed.) Side effects of anti-inflammatory drugs — IV. Kluwer Academic Publishers, Dordrecht, 43–53

    Google Scholar 

  385. Steinmeyer J, Daufeldt S (1997) Pharmacological influence of antirheumatic drugs on proteoglycans from interleukin-1 treated articular cartilage. Biochem Pharmacol 53: 1627–1635

    Article  PubMed  CAS  Google Scholar 

  386. Torzilli PA, Tehrany AM, Grigiene R, Young E (1996) Effects of misoprostol and prostaglandin E2 on proteoglycan biosynthesis and loss in unloaded and loaded articular cartilage explants. Prostaglandins 52: 157–173

    Article  PubMed  CAS  Google Scholar 

  387. Wang B, Yao YY, Chen MZ (1998) Effects of indomethacin on joint damage in rat and rabbit. Zhongguo Yao Li Xue Bao 19:70–73

    PubMed  CAS  Google Scholar 

  388. Solignac M (2004) Mechanisms of action of diacerein, the first inhibitor of interleukin-1 in osteoarthritis. Presse Med 33(Pt 2): S10–S12

    PubMed  Google Scholar 

  389. Botrel MA, Haak T, Legrand C, Concordet D, Chevalier R, Toutain PL (1994) Quantitative evaluation of an experimental inflammation induced with Freund’s complete adjuvant in dogs. J Pharmacol Toxicol Methods 32: 63–71

    Article  PubMed  CAS  Google Scholar 

  390. Gilroy DW, Tomlinson A, Greenslade K, Seed MP, Willoughby DA (1998) The effects of cyclooxygenase 2 inhibitors on cartilage erosion and bone loss in a model of Mycobacterium tuberculosis-induced monoarticular arthritis in the rat. Inflammation 22:509–519

    Article  PubMed  CAS  Google Scholar 

  391. Pelletier J-P, Martel-Pelletier J (1993) Effects of nimesulide and naproxen on the degradation and metalloproteinase synthesis of human osteoarthritic cartilage. Drugs 46(Suppl 1): 34–39

    Article  PubMed  CAS  Google Scholar 

  392. Sanchez C, Mateus MM, Defresne M-P, Crielaard J-MR, Reginster J-YL, Henrotin YE (2002) Metabolism of human articular chondrocytes cultured in alginate beads. Longterm effects of interleukin 1 β and nonsteroidal anti-inflammatory drugs. J Rheumatol 29: 772–782

    PubMed  CAS  Google Scholar 

  393. Frean SP, Cambridge H, Lees P (2002) Effects of anti-arthritic drugs on proteoglycan synthesis by equine cartilage. J Vet Pharmacol Ther 25: 289–298

    Article  PubMed  CAS  Google Scholar 

  394. Amin AR, Abramson SB (1998) The role of nitric oxide in articular cartilage breakdown in osteoarthritis. Curr Opin Rheumatol 10: 263–268

    Article  PubMed  CAS  Google Scholar 

  395. Tung JT, Venta PJ, Caron JP (2002) Inducible nitric oxide expression in equine articular chondrocytes: effects of anti-inflammatory compounds. Osteoarthritis Cartilage 10: 5–12

    Article  PubMed  CAS  Google Scholar 

  396. Mathy-Hartert M, Deby-Dupont GP, Reginster J-Y, Ayache N, Pujol JP, Henrotin YE (2002) Regulation by reactive oxygen species of interleukin-1 beta, nitric oxide and prostaglandin E2 production by human chondrocytes. Osteoarthritis Cartilage 10: 547–555

    Article  PubMed  CAS  Google Scholar 

  397. Barracchini A, Franceschini N, Amicosante G, Oratore A, Minisolat G, Pantaleoni G, Di Giulio A (1998) Can non-steroidal anti-inflammatory drugs act as metalloproteinase modulators? An in vitro study of inhibition of collagenase activity. J Pharm Pharmacol 50: 1417–1423

    PubMed  CAS  Google Scholar 

  398. Bevilacqua M, Devogelaer J-P, Righini V, Famaey J-P, Manicourt D-H (2004) Effect of nimesulide on the serum levels of hyaluronan and stromelysin-1 in patients with osteoarthritis: a pilot study. Int J Clin Pract (Suppl 144): 13–19

    Google Scholar 

  399. Kullich WC, Niksic F, Klein G (2002) Effect of nimesulide on metallo-proteinases and matrix degradation in osteoarthritis: A pilot clinical study. Int J Clin Pract (Suppl) 128: 24–29

    CAS  Google Scholar 

  400. Pelletier JP, Mineau F, Fernandes J, Kiansa K, Ranger P, Martel-Pelletier J (1997) Two NSAIDs, nimesulide and naproxen, can reduce the synthesis of urokinase and IL-6 while increasing PAI-1, in human OA synovial fibroblasts. Clin Exp Rheumatol 15: 393–398

    PubMed  CAS  Google Scholar 

  401. Pelletier JP, Di Battista JA, Zhang M, Fernandes J, Alaaeddine N, Martel-Pelletier J (1999) Effect of nimesulide on glucocorticoid receptor activity in human synovial fibroblasts. Rheumatology (Oxford) 38(Suppl 1): 11–13

    Article  CAS  Google Scholar 

  402. Di Battista JA, Fahmi H, He Y, Zhang M, Martel-Pelletier J, Pelletier JP (2001) Differential regulation of interleukin-1 beta-induced cyclooxygenase-2 gene expression by nimesulide in human synovial fibroblasts. Clin Exp Rheumatol 19: S3–S5

    PubMed  Google Scholar 

  403. Di Battista JA, Zhang M, Martel-Pelletier J, Fernandes J, Alaaeddine N, Pelletier JP (1999) Enhancement of phosphorylation and transcriptional activity of the glucocorticoid receptor in human synovial fibroblasts by nimesulide, a preferential cyclooxygenase 2 inhibitor. Arthritis Rheum 42: 157–166

    Article  PubMed  Google Scholar 

  404. de Paulis A, Ciccarelli A, Marino I, de Crescenzo G, Marino D, Marone G (1997) Human synovial mast cells. II. Heterogeneity of the pharmacologic effects of antiinflammatory and immunosuppressive drugs. Arthritis Rheum 40: 469–478

    Article  PubMed  Google Scholar 

  405. Casolaro V, Meliota S, Marino O, Patella V, de Paulis A, Guidi G, Marone G (1993) Nimesulide, a sulfonanilide nonsteriodal anti-inflammatory drug, inhibits mediator release from human basophils and mast cells. J Pharmacol Exp Therap 267: 1375–1385

    CAS  Google Scholar 

  406. Hashimoto S, Takahashi K, Amiel D, Coutts RD, Lotz M (1998) Chondrocyte apoptosis and nitric oxide production during experimentally induced osteoarthritis. Arthritis Rheum 41: 1266–1274

    Article  PubMed  CAS  Google Scholar 

  407. Hashimoto S, Ochs RL, Komiya S, Lotz M (1998) Linkage of chondrocyte apoptosis and cartilage degradation in human osteoarthritis. Arthritis Rheum 41: 1632–1638

    Article  PubMed  CAS  Google Scholar 

  408. Hashimoto S, Ochs RL, Rosen F (1998) Chondrocyte-derived apoptotic bodies and calcification of articular cartilage. Proc Natl Acad Sci USA 95: 3094–3099

    Article  PubMed  CAS  Google Scholar 

  409. Pelletier J-P, Jovanovic DV, Lasaucoman V (2000) Selective inhibition of inducible nitric oxide synthase reduces progression of experimental osteoarthritis in vivo: Possible link with the reduction in chondrocyte apoptosis and caspase-3 level. Arthritis Rheum 43: 1290–1299

    Article  PubMed  CAS  Google Scholar 

  410. Miwa M, Saura R, Hirata S, Hayashi Y, Mizuno K, Itoh H (2000) Induction of apoptosis in bovine articular chondrocytes by prostaglandin E2 through cAMP-dependent pathway. Osteoarthritis Cartilage 8: 17–24

    Article  PubMed  CAS  Google Scholar 

  411. Horton WE Jr, Feng L, Adams C (1998) Chondrocyte apoptosis in development, aging and disease. Matrix Biol 17: 107–115

    Article  PubMed  CAS  Google Scholar 

  412. Mukherjee P, Rachita C, Aisen PS, Pasinetti GM (2001) Non-steroidal anti-inflammatory drugs protect against chondrocyte apoptotic death. Clin Exp Rheumatol 19: S7–S11

    PubMed  CAS  Google Scholar 

  413. Mukherjee P, Pasinetti GM (2002) Altered gene expression during nimesulide-mediated inhibition of apoptotic death in human chondrocytes. Int J Clin Pract (Suppl): 20–23

    Google Scholar 

  414. Maffei Facino R, Carini M, Aldini G, Saibene L, Morelli R (1995) Differential inhibition of superoxide, hydroxyl and peroxyl radicals by nimesulide and its main metabolite 4-hydroxynimesulide. Arzneim Forsch 45(II): 10–17

    Google Scholar 

  415. Facino RM, Carini M, Aldini G (1993) Antioxidant activity of nimesulide and its main metabolites. Drugs 46(Suppl 1): 15–21

    Article  PubMed  Google Scholar 

  416. Maffei Facino R, Carini M, Aldini G, Saibene L, Macciocchi A (1993) Antioxidant profile of nimesulide, indomethacin and diclofenac in phosphatidylcholine liposomes (PCL) as membrane model. Int J Tissue React 15: 225–234

    CAS  Google Scholar 

  417. Zheng SX, Mouithys-Mickalad A, Deby-Dupont GP, Deby CM, Maroulis AP, Labasse AH, Lamy ML, Crielaard JM, Reginster JY, Henrotin YE (2000) In vitro study of the antioxidant properties of nimesulide and 4-OH nimesulide: effects on HRP-and luminol-dependent chemiluminescence produced by human chondrocytes. Osteoarthritis Cartilage 8: 419–425

    Article  PubMed  CAS  Google Scholar 

  418. Stanford SJ, Pepper JR, Mitchell JA (2000) Cyclooxygenase-2 regulates granulocytemacrophage colony-stimulating factor, but not interleukin-8, production by human vascular cells: role of cAMP. Arterioscler Thromb Vasc Biol 20: 677–682

    PubMed  CAS  Google Scholar 

  419. Ottino P, Bazan HE (2001) Corneal stimulation of MMP-1,-9 and uPA by platelet-activating factor is mediated by cyclooxygenase-2 metabolites. Curr Eye Res 23: 77–85

    Article  PubMed  CAS  Google Scholar 

  420. Turner MA, Vause S, Greenwood SL (2004) The regulation of interleukin-6 secretion by prostanoids and members of the tumor necrosis factor superfamily in fresh villous fragments of term human placenta. J Soc Gynecol Investig 11: 141–148

    Article  PubMed  CAS  Google Scholar 

  421. Ricote M, Li AC, Wilson TM, Kelly CJ, Glass CK (1998) The peroxisome proliferatoractivated receptor-gamma is a negative regulator of macrophage activation. Nature 391: 79–82

    Article  PubMed  CAS  Google Scholar 

  422. Jiang C, Ting AT, Seed B (1998) PPAR-γ agonists inhibit production of monocyte inflammatory cytokines. Nature 391: 82–86

    Article  PubMed  CAS  Google Scholar 

  423. Fahmi H, Di Battista JA, Pelletier J-P, Mineau F, Ranger P, Martel-Pelletier J (2001) Peroxisome proliferators-activated receptor activators inhibit interleukin-1β-induced nitric oxide and matrix metalloproteinase 13 production in human chondrocytes. Arthritis Rheum 44: 595–607

    Article  PubMed  CAS  Google Scholar 

  424. Kalajdzic T, Faour WH, He QW, Fahmi H, Martel-Pelletier J, Pelletier JP, Di Battista JA (2002) Nimesulide, a preferential cyclooxygenase 2 inhibitor, suppresses peroxisome proliferator-activated receptor induction of cyclooxygenase 2 gene expression in human synovial fibroblasts: evidence for receptor antagonism. Arthritis Rheum 46: 494–506

    Article  PubMed  CAS  Google Scholar 

  425. Famaey J-P, Fontaine J, Reuse J (1975) Inhibiting effects of morphine, chloroquine, non-steroidal and steroidal anti-inflammatory drugs on electrically-induced contractions of guinea pig ileum and reversing effects of prostaglandins. Agents Actions 5: 354–358

    Article  PubMed  CAS  Google Scholar 

  426. Altura BM, Altura BY (1976) Vascular smooth muscle and prostaglandins. Fed Proc 35: 2360–2366

    PubMed  CAS  Google Scholar 

  427. Vanhoutte PM, Rimele TJ, Rooke TW (1984) Calcium entry and the contraction of vascular smooth muscle. Adv Cyclic Nucleotide Prot Phosph Res 17: 569–573

    CAS  Google Scholar 

  428. Kurahashi K, Nishihashi T, Trandafir CC, Wang AM, Murakami S, Ji X (2003) Diversity of endothelium-derived vasocontracting factors — arachidonic acid metabolites. Acta Pharmacol Sin 24: 1065–1069

    PubMed  CAS  Google Scholar 

  429. Malofiejew M, Blaszkiewicz Z (1979) The effect of nonsteroidal antiphlogistic drugs upon the spontaneous contractility of rats myometrium. Gin Pol 30: 299–304 (Polish)

    Google Scholar 

  430. Sawdy R, Knock GA, Bennett PR, Poston L, Aaronson PI (1998) Effect of nimesulide and indomethacin on contractility and the Ca2+ channel current in myometrial smooth muscle from pregnant women. Br J Pharmacol 125: 1212–1217

    Article  PubMed  CAS  Google Scholar 

  431. Baguma-Nibasheka M, Nathanielsz PW (1998) In vivo administration of nimesulide, a selective PGHS-2 inhibitor, increases in vitro myometrial sensitivity to prostaglandins while lowering sensitivity to oxytocin. J Soc Gynecol Investig 5: 296–299

    Article  PubMed  CAS  Google Scholar 

  432. Connolly C, McCormick PA, Docherty JR (1998) Effects of the selective cyclooxygenase-2 inhibitor nimesulide on vascular contractions in endothelium-denuded rat aorta. Eur J Pharmacol 352: 53–58

    Article  PubMed  CAS  Google Scholar 

  433. Slattery MM, Friel AM, Healy DG, Morrison JJ (2001) Uterine relaxant effects of cyclooxygenase-2 inhibitors in vitro. Obstet Gynecol 98: 563–569

    Article  PubMed  CAS  Google Scholar 

  434. Landen CN Jr, Zhang P, Young RC (2001) Differing mechanisms of inhibition of calcium increases in human uterine myocytes by indomethacin and nimesulide. Am J Obstet Gynecol 184:1100–1103

    Article  PubMed  CAS  Google Scholar 

  435. Karadas B, Kaya T, Guvenal T, Cetin M, Divrik I, Cetin A (2004) Comparison of the effects of nimesulide and 5,5-dimethyl-3-(3-fluorophenyl)-4-(4-methylsulphonyl) phenyl-2(5H)-furanone (DFU) on contractions of isolated pregnant human myometrium. Eur J Obstet Gynecol Reprod Biol 113: 172–177

    Article  PubMed  CAS  Google Scholar 

  436. Ross RG, Sathishkumar K, Naik AK, Bawankule DU, Sarkar SN, Mishra SK, Prakash VR (2004) Mechanisms of lipopolysaccharide-induced changes in effects of contractile agonists on pregnant rat myometrium. Am J Obstet Gynecol 190: 532–540

    Article  PubMed  CAS  Google Scholar 

  437. Karadas B, Kaya T, Bagcivan I, Kaloglu C, Guvenal T, Cetin A, Soydan AS (2004) Comparison of effects of cyclooxygenase inhibitors on myometrial contraction and constriction of ductus arteriosus in rats. Eur J Pharmacol 485: 289–282

    Article  PubMed  CAS  Google Scholar 

  438. White LR, Juul R, Cappelen J, Aasly J (2002) Cyclooxygenase inhibitors attenuate endothelin ET(B) mediated contraction in humnan temporal artery. Eur J Pharmacol 448: 51–57

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Birkäuser Verlag Basel/Switzerland

About this chapter

Cite this chapter

Rainsford, K. et al. (2005). Pharmacological properties of nimesulide. In: Rainsford, K. (eds) Nimesulide — Actions and Uses. Birkhäuser Basel. https://doi.org/10.1007/3-7643-7410-1_4

Download citation

Publish with us

Policies and ethics