Skip to main content

Immunosuppressives in transplant rejection

  • Chapter
Principles of Immunopharmacology
  • 1375 Accesses

Summary

A series of immunosuppressives is nowadays on the market or in advanced clinical development that are efficacious in prevention or treatment of rejection of a transplant in patients with end-stage organ failure. These can roughly be divided into lowmolecular-weight XENOBIOTICS, orally active drugs produced by microorganisms or chemical synthesis, and biologicals, (monoclonal) antibodies or rDNA fusion proteins. Most XENOBIOTICS work intracellularly and affect different pathways in lymphocyte activation and/or proliferation; since such pathways are not truly selective for LYMPHOCYTES, most of these drugs show inherent side-effects and generally have a low therapeutic window. However, the availability of novel agents with a broader therapeutic window, and refinements in combination treatment have greatly added to improved tolerability of immunosuppressive regimens. Broadly acting cytotoxic drugs with severe side-effects are gradually being replaced by compounds with a more selective action towards lymphoid cells, and corticosteroid-sparing regimens are being applied to reduce the adverse side-effects of corticosteroids. Most biologicals work by binding to cell surface molecules, resulting in inactivation or depletion of the target cells. Progress in this area has not only resulted in improved IMMUNOSUPPRESSION, but also in potential approaches to induce a status of unresponsiveness, i.e., TOLERANCE to the transplant. This is achieved either by efficient depletion of reactive cells or by inhibition of second signals in coreceptor blockade in T CELL activation. New paradigms in IMMUNOSUPPRESSION involve interference with cell trafficking (lymphocyte recirculation) that appears possible by using either innovative XENOBIOTICS or biologicals binding to cell ADHESION MOLECULES.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Selected readings

  • Allison AC (2000) Immunosuppressive drugs: the first 50 years and a glance forward. Immunopharmacology 47: 63–83

    PubMed  CAS  Google Scholar 

  • Kanmaz T, Knechtle SJ (2003) Novel agents or strategies for immunosuppression after renal transplantation. Curr Opin Organ Transplant 8: 172–178

    Google Scholar 

  • Lieberman R, Mukherjee A (eds) (1996) Principles of Drug Development in Transplantation and Autoimmunity. Chapman and Hall, New York

    Google Scholar 

  • Matthews JB, Ramos E, Bluestone JA (2003) Clinical trials of transplant tolerance: slow but steady progress. Am J Transplant 3: 794–803

    Article  PubMed  Google Scholar 

  • McAlister VC (2002) New immunosuppressants in clinical trial. Curr Drug Targets Cardiovasc Haematol Disord 2: 73–77

    Article  PubMed  CAS  Google Scholar 

  • Schuurman H-J, Feutren G, Bach J-F (eds) (2001) Modern Immunosuppressives. Birkhäuser Verlag, Basel

    Google Scholar 

  • Vilatoba M, Contreras JL, Eckhoff DE (2003) New immunosuppressive strategies in liver transplantation: balancing efficacy and toxicity. Curr Opin Organ Transplant 8: 139–145

    Google Scholar 

  • Vincenti F (2002) What’s in the pipeline? New immunosuppressive drugs in transplantation. Am J Transpl 2: 898–903

    Article  CAS  Google Scholar 

References

  1. Kahan BD, Keown P, Levy GA, Johnston A (2002) Therapeutic drug monitoring of immunosuppressant drugs in clinical practice. Clin Ther 24: 330–350

    Article  PubMed  CAS  Google Scholar 

  2. Nalesnik MA (2002) Clinicopathologic characteristics of post-transplant lymphoproliferative disorders. Recent Results Cancer Res 159: 9–18

    PubMed  Google Scholar 

  3. Allan JS, Madsen JC (2002) Recent advances in the immunology of chronic rejection. Curr Opin Nephrol Hypertens 11: 315–321

    Article  PubMed  Google Scholar 

  4. Borel JF (1990) Pharmacology of cyclosporine (Sandimmune). IV. Pharmacological properties in vivo. Pharmacol Rev 41: 259–371

    PubMed  CAS  Google Scholar 

  5. Schreier MH (1997) Mechanism of action of cyclosporin. In: T Anke (ed): Fungal Biotechnology. Chapman and Hall, New York, 137–146

    Google Scholar 

  6. Rusnak F, Mertz P (2000) Calcineurin: form and function. Physiol Rev 80: 1483–1521

    PubMed  CAS  Google Scholar 

  7. Lee JI, Burckart GJ (1998) Nuclear factor kappa B: important transcription factor and therapeutic target. J Clin Pharmacol 38: 981–993

    PubMed  CAS  Google Scholar 

  8. Dumont FJ (2000) FK506, an immunosuppressant targeting calcineurin function. Curr Med Chem 7:731–748

    PubMed  CAS  Google Scholar 

  9. Kahan BD (2001) Sirolimus: a comprehensive review. Expert Opin Pharmacother 2: 1903–1917

    Article  PubMed  CAS  Google Scholar 

  10. Nashan B (2002) Review of the proliferation inhibitor everolimus. Expert Opin Investig Drugs 11: 1845–1857

    Article  PubMed  CAS  Google Scholar 

  11. Abraham RT (2002) Identification of TOR signaling complexes: more TORC for the cell growth engine. Cell 111: 9–12

    Article  PubMed  CAS  Google Scholar 

  12. Eisen HJ, Tuzcu EM, Dorent R, Kobashigawa J, Mancini D, Valantine-von Kaeppler HA, Starling RC, Sorensen K, Hummel M, Lind JM et al (2003) Everolimus for the prevention of allograft rejection and vasculopathy in cardiac-transplant recipients. N Engl J Med 349: 847–858

    Article  PubMed  CAS  Google Scholar 

  13. Indolfi C, Mongiardo A, Curcio A, Torella D (2003) Molecular mechanisms of in-stent restenosis and approach to therapy with eluting stents. Trends Cardiovasc Med 13: 142–148

    Article  PubMed  CAS  Google Scholar 

  14. Huang S, Houghton PJ (2002) Inhibitors of mammalian target of rapamycin as novel antitumor agents: from bench to clinic. Curr Opin Invest Drugs 3:295–304

    CAS  Google Scholar 

  15. Yokota S (2002) Mizoribine: mode of action and effects in clinical use. Pediatr Int 44: 196–198

    PubMed  CAS  Google Scholar 

  16. Ishikawa H (1999) Mizoribine and mycophenolate mofetil. Curr Med Chem 6: 575–597

    PubMed  MathSciNet  CAS  Google Scholar 

  17. Miceli-Richard C, Dougados M (2003) Leflunomide for the treatment of rheumatoid arthritis. Expert Opin Pharmacother 4: 987–997

    Article  PubMed  CAS  Google Scholar 

  18. Schorlemmer H, Bartlett R, Kurrle R (1998) Malononitrilamides: a new strategy of immunosuppression for allo-and xenotransplantation. Transplant Proc 30: 884–890

    PubMed  CAS  Google Scholar 

  19. Simpson D (2001) Tresperimus: a new agent for transplant tolerance induction. Expert Opin Investig Drugs 10: 1381–1386

    Article  PubMed  CAS  Google Scholar 

  20. Brinkmann V, Lynch KR (2002) FTY720: targeting Gcoupled receptors for sphingosine 1-phosphate in transplantation and autoimmunity. Curr Opin Immunol 14: 569–575

    Article  PubMed  CAS  Google Scholar 

  21. Brinkmann V, Pinschewer DD, Feng L, Chen S (2001) FTY720: altered lymphocyte traffic results in allograft protection. Transplantation 72: 764–769

    PubMed  CAS  Google Scholar 

  22. Gaber AO, First MR, Tesi RJ, Gaston RS, Mendez R, Mulloy LL, Light JA, Gaber LW, Squiers E, Taylor RJ et al (1998) Results of the double-blind, randomized, Multicentre, phase III clinical trial of Thymoglobulin versus ATGAM in the treatment of acute graft rejection episodes after renal transplantation. Transplantation 66: 29–37

    PubMed  CAS  Google Scholar 

  23. Chatenoud L (2003) CD3-specific antibody-induced active tolerance: from bench to bedside. Nat Rev Immunol 3: 123–132

    Article  PubMed  CAS  Google Scholar 

  24. Renders L, Valerius T (2003) Engineered CD3 antibodies for immunosuppression. Clin Exp Immunol 133: 307–309

    Article  PubMed  CAS  Google Scholar 

  25. Vincenti F, Kirkman R, Light S, Bumgardner G, Pescovitz M, Halloran P, Neylan J, Wilkinson A, Ekberg H, Gaston R et al (1998) Interleukin-2-receptor blockade with daclizumab to prevent acute rejection in renal transplantation. N Engl J Med 338: 161–165

    Article  PubMed  CAS  Google Scholar 

  26. Nashan B, Moore R, Amlot P, Schmidt AG, Abeywickrama K, Soulillou JP (1997) Randomised trial of basiliximab versus placebo for control of acute cellular rejection in renal allograft recipients. Lancet 350: 1193–1198

    Article  PubMed  CAS  Google Scholar 

  27. Calne R, Moffat SD, Friend PJ, Jamieson NV, Bradley JA, Hale G, Firth J, Bradley J, Smith KG, Waldmann H (1999) Campath 1H allows low-dose cyclosporine monotherapy in 31 cadaveric renal allograft recipients. Transplantation 68: 1613–1616

    PubMed  CAS  Google Scholar 

  28. Kirk AD, Hale DA, Mannon RB, Kleiner DE, Hoffmann SC, Kampen RL, Cendales LK, Tadaki DK, Harlan DM, Swanson SJ (2003) Results from a human renal allograft tolerance trial evaluating the humanized CD52-specific monoclonal antibody alemtuzumab (CAMPATH-1H). Transplantation 76: 120–129

    PubMed  CAS  Google Scholar 

  29. Przepiorka D, Phillips GL, Ratanatharathorn V, Cottler-Fox M, Sehn LH, Antin JH, LeBherz D, Awwad M, Hope J, McClain JB (1998) A phase II study of BTI-322, A monoclonal anti-CD2 antibody, for treatment of steroidresistant acute graft-versus-host disease. Blood 92: 4066–4071

    PubMed  CAS  Google Scholar 

  30. Luke PP, O’Brien CA, Jevnikar AM, Zhong R (2001) Anti-CD45RB monoclonal antibody-mediated transplantation tolerance. Curr Mol Med 1: 533–543

    Article  PubMed  CAS  Google Scholar 

  31. Hausen B, Klupp J, Christians U, Higgins JP, Baumgartner RE, Hook LE, Friedrich S, Celnicker A, Morris RE (2001) Coadministration of either cyclosporine or steroids with humanized monoclonal antibodies against CD80 and CD86 successfully prolong allograft survival after life supporting renal transplantation in cynomolgus monkeys. Transplantation 72: 1128–1137

    PubMed  CAS  Google Scholar 

  32. Kirk AD, Burkly LC, Batty DS, Baumgartner RE, Berning JD, Buchanan K, Fechner JH Jr, Germond RL, Kampen RL, Patterson NB et al (1999) Treatment with humanized monoclonal antibody against CD154 prevents acute renal allograft rejection in nonhuman primates. Nat Med 5: 686–693

    Article  PubMed  CAS  Google Scholar 

  33. Haanstra KG, Ringers J, Sick EA, Ramdien-Murli S, Kuhn EM, Boon L, Jonker M (2003) Prevention of kidney allograft rejection using anti-CD40 and anti-CD86 in primates. Transplantation 75: 637–643

    PubMed  CAS  Google Scholar 

  34. Nakakura EK, Shorthouse RA, Zheng B, McCabe SM, Jardieu PM, Morris RE (1996) Long-term survival of solid organ allografts by brief anti-lymphocyte function-associated antigen-1 monoclonal antibody monotherapy. Transplantation 62: 547–552

    PubMed  CAS  Google Scholar 

  35. Dedrick RL, Walicke P, Garovoy M (2002) Anti-adhesion antibodies efalizumab, a humanized anti-CD11a monoclonal antibody. Transpl Immunol 9: 181–186

    PubMed  CAS  Google Scholar 

  36. Ghosh S (2003) Therapeutic value of alpha-4 integrin blockade in inflammatory bowel disease: the role of natalizumab. Expert Opin Biol Ther 3: 995–1000

    PubMed  CAS  Google Scholar 

  37. Moreland LW, Alten R, van den Bosch F, Appelboom T, Leon M, Emery P, Cohen S, Luggen M, Shergy W, Nuamah I et al (2002) Costimulatory blockade in patients with rheumatoid arthritis: a pilot, dose-finding, double-blind, placebo-controlled clinical trial evaluating CTLA-4Ig and LEA29Y eighty-five days after the first infusion. Arthritis Rheum 46: 1470–1479

    PubMed  CAS  Google Scholar 

  38. Ormerod AD (2003) Alefacept. Biogen. Curr Opin Investig Drugs 4: 608–613

    PubMed  CAS  Google Scholar 

  39. Kreitman RJ (2003) Recombinant toxins for the treatment of cancer. Curr Opin Mol Ther 5: 44–51

    PubMed  CAS  Google Scholar 

  40. Knechtle SJ, Hamawy MM, Hu H, Fechner JH Jr, Cho CS (2001) Tolerance and near-tolerance strategies in monkeys and their application to human renal transplantation. Immunol Rev 183: 205–213

    Article  PubMed  CAS  Google Scholar 

  41. Akamine S, Katayama Y, Higewnbottam T, Lock T (1998) Developments in inhaled immunosuppressive therapy for the prevention of pulmonary graft rejection. Biodrugs 9: 49–59

    Article  CAS  Google Scholar 

  42. Boon L, Laman JD, Ortiz-Buijsse A, Den Hartog MT, Hoffenberg S, Liu P, Shiau F, de Boer M (2002) Preclinical assessment of anti-CD40 Mab 5D12 in cynomolgus monkeys. Toxicology 174: 53–65

    Article  PubMed  CAS  Google Scholar 

  43. Nahar IK, Shojania K, Marra CA, Alamgir AH, Anis AH (2003) Infliximab treatment of rheumatoid arthritis and Crohn’s disease. Ann Pharmacother 37: 1256–1265

    Article  PubMed  CAS  Google Scholar 

  44. Cohen SB, Rubbert A (2003) Bringing the clinical experience with anakinra to the patient. Rheumatology 42(Suppl 2): ii36–ii40

    PubMed  CAS  Google Scholar 

  45. Goffe B, Cather JC (2003) Etanercept: An overview. J Am Acad Dermatol 49(2 Suppl): S105–S111

    PubMed  Google Scholar 

  46. Haskell CA, Hancock WW, Salant DJ, Gao W, Csizmadia V, Peters W, Faia K, Fituri O, Rottman JB, Charo IF (2001) Targeted deletion of CX(3)CR1 reveals a role for fractalkine in cardiac allograft rejection. J Clin Invest 108: 679–688

    Article  PubMed  CAS  Google Scholar 

  47. Sykes M, Spitzer TR (2002) Non-myeloblative induction of mixed hematopoietic chimerism: application to transplantation tolerance and hematologic malignancies in experimental and clinical studies. Cancer Treat Res 110: 79–99

    PubMed  Google Scholar 

  48. Bühler LH, Spitzer TR, Sykes M, Sachs DH, Delmonico FL, Tolkoff-Rubin N, Saidman SL, Sackstein R, McAfee S, Dey B et al (2002) Induction of kidney allograft tolerance after transient lymphohematopoietic chimerism in patients with multiple myeloma and end-stage renal disease. Transplantation 74: 1405–1409

    PubMed  Google Scholar 

  49. Vincenti F (2002) What’s in the pipeline? New immunosuppressive drugs in transplantation. Am J Transpl 2: 898–903

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Birkhäuser Verlag

About this chapter

Cite this chapter

Schuurman, HJ. (2005). Immunosuppressives in transplant rejection. In: Nijkamp, F.P., Parnham, M.J. (eds) Principles of Immunopharmacology. Birkhäuser Basel. https://doi.org/10.1007/3-7643-7408-X_24

Download citation

Publish with us

Policies and ethics