Sharp Energy Estimates for a Class of Weakly Hyperbolic Operators

  • Michael Dreher
  • Ingo Witt
Part of the Operator Theory: Advances and Applications book series (OT, volume 159)


The intention of this article is twofold: First, we survey our results from [20, 18] about energy estimates for the Cauchy problem for weakly hyperbolic operators with finite time degeneracy at time t = 0. Then, in a second part, we show that these energy estimates are sharp for a wide range of examples. In particular, for these examples we precisely determine the loss of regularity that occurs in passing from the Cauchy data at t = 0 to the solutions.


Weakly hyperbolic operators finite time degeneracy well-posedness of the Cauchy problem sharp energy estimates loss of regularity 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    G. Aleksandrian. Parametrix and propagation of the wave front of a solution to a Cauchy problem for a model hyperbolic equation (in Russian). Izv. Akad. Nauk Armyan. SSR Ser. Mat., 19:219–232, 1984.MathSciNetGoogle Scholar
  2. [2]
    S. Alinhac. Branching of singularities for a class of hyperbolic operators. Indiana Univ. Math. J., 27:1027–1037, 1978.CrossRefzbMATHMathSciNetGoogle Scholar
  3. [3]
    K. Amano and G. Nakamura. Branching of singularities for degenerate hyperbolic operators and Stokes phenomena, IV. Proc. Japan Acad. Ser. A Math. Sci., 59:47–50, 1983.MathSciNetGoogle Scholar
  4. [4]
    K. Amano and G. Nakamura. Branching of singularities for degenerate hyperbolic operators. Publ. Res. Inst. Math. Sci., 20:225–275, 1984.MathSciNetGoogle Scholar
  5. [5]
    G. Bourdaud, M. Reissig, and W. Sickel. Hyperbolic equations, function spaces with exponential weights and Nemytskij operators. Ann. Mat. Pura Appl. (4), 182:409–455, 2003.MathSciNetGoogle Scholar
  6. [6]
    L. Boutet de Monvel. Hypoelliptic operators with double characteristics and related pseudo-differential operators. Comm. Pure Appl. Math., 27:585–639, 1974.zbMATHMathSciNetGoogle Scholar
  7. [7]
    L. Boutet de Monvel and F. Trèves. On a class of pseudodifferential operators with double characteristics. Invent. Math., 24:1–34, 1974.MathSciNetGoogle Scholar
  8. [8]
    A. Bove, J. E. Lewis, and C. Parenti. Propagation of Singularities for Fuchsian Operators, volume 984 of Lecture Notes in Math. Springer, Berlin, 1983.Google Scholar
  9. [9]
    M. D. Bronstein. The Cauchy problem for hyperbolic operators with characteristics of variable multiplicity. Trans. Mosc. Math. Soc., 1:87–103, 1982.Google Scholar
  10. [10]
    F. Colombini and H. Ishida. Well-posedness of the Cauchy problem in Gevrey classes for some weakly hyperbolic equations of higher order. J. Anal. Math., 90:13–25, 2003.MathSciNetGoogle Scholar
  11. [11]
    F. Colombini, H. Ishida, and N. Orrú. On the Cauchy problem for finitely degenerate hyperbolic equations of second order. Ark. Mat., 38(2):223–230, 2000.MathSciNetGoogle Scholar
  12. [12]
    F. Colombini, E. Jannelli, and S. Spagnolo. Well-posedness in the Gevrey classes of the Cauchy problem for a non-strictly hyperbolic equation with coefficients depending on time. Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4), 10:291–312, 1983.MathSciNetGoogle Scholar
  13. [13]
    F. Colombini and N. Orrú. Well posedness in C∞ for some weakly hyperbolic equations. J. Math. Kyoto Univ., 39(3):399–420, 1999.MathSciNetGoogle Scholar
  14. [14]
    F. Colombini and S. Spagnolo. An example of a weakly hyperbolic Cauchy problem not well posed in C∞. Acta Math., 148:243–253, 1982.MathSciNetGoogle Scholar
  15. [15]
    H. O. Cordes. A global parametrix for pseudo-differential operators over ℝn, with applications. Reprint, Universität Bonn, SFB 72, 1976.Google Scholar
  16. [16]
    M. Dreher. Weakly hyperbolic equations, Sobolev spaces of variable order, and propagation of singularities. Osaka J. Math., 39:409–445, 2002.zbMATHMathSciNetGoogle Scholar
  17. [17]
    M. Dreher and M. Reissig. Propagation of mild singularities for semilinear weakly hyperbolic equations. J. Analyse Math., 82:233–266, 2000.MathSciNetGoogle Scholar
  18. [18]
    M. Dreher and I. Witt. Energy estimates for weakly hyperbolic systems of the first order. To appear in Commun. Contemp. Math.Google Scholar
  19. [19]
    M. Dreher and I. Witt. Mixed initial-boundary value problems for a class of weakly hyperbolic operators. In preparation.Google Scholar
  20. [20]
    M. Dreher and I. Witt. Edge Sobolev spaces and weakly hyperbolic equations. Ann. Mat. Pura Appl. (4), 180:451–482, 2002.MathSciNetGoogle Scholar
  21. [21]
    M. Gevrey. Sur les équations aux dérivées du type parabolique. J. Math. Pures Appl., 9:305–471, 1913.Google Scholar
  22. [22]
    G. Grubb. Functional calculus of pseudo-differential boundary problems, volume 65 of Progr. Math. Birkhäuser Boston, Boston, MA, second edition, 1996.Google Scholar
  23. [23]
    N. Hanges. Parametrices and propagation for operators with non-involutive characteristics. Indiana Univ. Math. J., 28:87–97, 1979.CrossRefzbMATHMathSciNetGoogle Scholar
  24. [24]
    L. Hörmander. Linear Partial Differential Operators, volume 116 of Grundlehren Math. Wiss. Springer, 1969.Google Scholar
  25. [25]
    L. Hörmander. The Cauchy problem for differential equations with double characteristics. J. Anal. Math., 32:118–196, 1977.zbMATHGoogle Scholar
  26. [26]
    L. Hörmander. The Analysis of Linear Partial Differential Operators. Springer, 1985.Google Scholar
  27. [27]
    H. Ishida and K. Yagdjian. On a sharp Levi condition in Gevrey classes for some infinitely degenerate hyperbolic equations and its necessity. Publ. Res. Inst. Math. Sci., 38:265–287, 2002.MathSciNetGoogle Scholar
  28. [28]
    V. Y. Ivrii. Wave fronts of solutions of some microlocally hyperbolic pseudodifferential equations. Soviet Math. Dokl., 17:233–236, 1976.zbMATHGoogle Scholar
  29. [29]
    V. Y. Ivrii. Well-posedness conditions in Gevrey classes for the Cauchy problem for non-strictly hyperbolic operators. Siberian Math. J., 17:422–435, 1976.Google Scholar
  30. [30]
    V. Y. Ivrii. Conditions for correctness in Gevrey classes of the Cauchy problem for hyperbolic operators with characteristics of variable multiplicity. Siberian Math. J., 17:921–931, 1977.zbMATHGoogle Scholar
  31. [31]
    V. Y. Ivrii. Correctness in Gevrey classes of the Cauchy problem for certain nonstrictly hyperbolic operators. Soviet Math. (Iz. VUZ), 22:22–29, 1978.Google Scholar
  32. [32]
    V. Y. Ivrii. Sufficient conditions for regular and completely regular hyperbolicity. Trans. Moscow Math. Soc., 33:1–65, 1978.zbMATHGoogle Scholar
  33. [33]
    V. Y. Ivrii and V. M. Petkov. Necessary conditions for the Cauchy problem for non-strictly hyperbolic equations to be well-posed. Russian Math. Surveys, 29:1–70, 1974.CrossRefMathSciNetGoogle Scholar
  34. [34]
    N. Iwasaki. Cauchy problems for effectively hyperbolic equations (A standard type). Publ. Res. Inst. Math. Sci., 20:543–584, 1984.zbMATHMathSciNetGoogle Scholar
  35. [35]
    N. Iwasaki. Examples of effectively hyperbolic equations. In F. Colombini and M. K. V. Murthy, editors, Hyperbolic Equations. Proceedings of the Conference on Hyperbolic Equations and Related Topics, University of Padova, Italy, 1985, volume 158 of Pitman Res. Notes Math. Ser., pages 82–94, Harlow, 1987. Longman.Google Scholar
  36. [36]
    M. S. Joshi. A symbolic construction of the forward fundamental solution of the wave operator. Comm. Partial Differential Equations, 23:1349–1417, 1998.zbMATHMathSciNetGoogle Scholar
  37. [37]
    K. Kajitani. Local solution of Cauchy problem for nonlinear hyperbolic systems in Gevrey classes. Hokkaido Math. J., 12:434–460, 1983.MathSciNetGoogle Scholar
  38. [38]
    K. Kajitani and T. Nishitani. The hyperbolic Cauchy problem, volume 1505 of Lecture Notes in Math. Springer, Berlin, 1991.Google Scholar
  39. [39]
    K. Kajitani, S. Wakabayashi, and K. Yagdjian. The hyperbolic operators with the characteristics vanishing with the different speeds. Osaka J. Math., 39:1–39, 2002.MathSciNetGoogle Scholar
  40. [40]
    H. Komatsu. Irregularity of characteristic elements and hyperbolicity. Publ. Res. Inst. Math. Sci., 12:233–245, 1977.zbMATHMathSciNetGoogle Scholar
  41. [41]
    H. Kumano-go. Fundamental solution for a hyperbolic system with diagonal principal part. Comm. Partial Differential Equations, 4:959–1015, 1979.zbMATHMathSciNetGoogle Scholar
  42. [42]
    P. D. Lax. Asymptotic solutions of oscillatory initial value problems. Duke Math. J., 24:627–646, 1957.CrossRefzbMATHMathSciNetGoogle Scholar
  43. [43]
    J. Leray. Hyperbolic Differential Equations. Inst. Adv. Study, Princeton, 1954.Google Scholar
  44. [44]
    E. E. Levi. Sul problema di Cauchy per le equazioni lineari in due variabili a caratteristiche reali. Lomb. Ist. Rend (2), 41:408–428, 691–712, 1908.zbMATHGoogle Scholar
  45. [45]
    E. E. Levi. Caratteristiche multiple e problema di Cauchy. Annali di Mat. (3), 16:161–201, 1909.zbMATHGoogle Scholar
  46. [46]
    W. Matsumoto. On the conditions for the hyperbolicity of systems with double characteristic roots, I. J. Math. Kyoto Univ., 21:47–84, 1981. II. J. Math. Kyoto Univ., 21:251–271, 1981.zbMATHMathSciNetGoogle Scholar
  47. [47]
    R. B. Melrose. Normal self-intersections of the characteristic variety. Bull. Amer. Math. Soc., 81:939–940, 1975.zbMATHMathSciNetGoogle Scholar
  48. [48]
    R. B. Melrose. The Cauchy problem for effectively hyperbolic operators. Hokkaido Math. J., 12:371–391, 1983.zbMATHMathSciNetGoogle Scholar
  49. [49]
    S. Mizohata. Some remarks on the Cauchy problem. J. Math. Kyoto Univ., 1:109–127, 1961.zbMATHMathSciNetGoogle Scholar
  50. [50]
    G. Nakamura and H. Uryu. Parametrix of certain weakly hyperbolic operators. Comm. Partial Differential Equations, 5:837–896, 1980.MathSciNetGoogle Scholar
  51. [51]
    T. Nishitani. On the Lax-Mizohata theorem in the analytic and Gevrey classes. J. Math. Kyoto Univ., 18:509–521, 1978.zbMATHMathSciNetGoogle Scholar
  52. [52]
    T. Nishitani. Local energy integrals for effectively hyperbolic operators, I. J. Math. Kyoto Univ., 24:623–658, 1984. II. J. Math. Kyoto Univ. 24:659–666, 1984.zbMATHMathSciNetGoogle Scholar
  53. [53]
    T. Nishitani. Weakly hyperbolic Cauchy problem for second order operators. Publ. Res. Inst. Math. Sci., 21:1–26, 1985.zbMATHMathSciNetGoogle Scholar
  54. [54]
    T. Nishitani. Hyperbolicity of two by two systems with two independent variables. Comm. Partial Differential Equations, 23:1061–1110, 1998.zbMATHMathSciNetGoogle Scholar
  55. [55]
    T. Nishitani and J. Vaillant. Smoothly symmetrizable systems and the reduced dimensions II. Tsukuba J. Math., 27:389–403, 2003.MathSciNetGoogle Scholar
  56. [56]
    O. A. Oleinik. On the Cauchy problem for weakly hyperbolic equations. Comm. Pure Appl. Math., 23:569–586, 1970.MathSciNetGoogle Scholar
  57. [57]
    C. Parenti. Operatori pseudo-differenziali in ℝn e applicazioni. Ann. Mat. Pura Appl., 93:359–389, 1972.zbMATHMathSciNetGoogle Scholar
  58. [58]
    I. G. Petrovskij. On the Cauchy problem for systems of linear partial differential equations. Bull. Univ. Mosk. Ser. Int. Mat. Mekh., 1:1–74, 1938.Google Scholar
  59. [59]
    M.-Y. Qi. On the Cauchy problem for a class of hyperbolic equations with initial data on the parabolic degenerating line. Acta Math. Sinica, 8:521–529, 1958.MathSciNetGoogle Scholar
  60. [60]
    M. Reissig and K. Yagdjian. On the Stokes matrix for a family of infinitely degenerate operators of second order. Tsukuba J. Math., 21:671–706, 1997.MathSciNetGoogle Scholar
  61. [61]
    M. Reissig and K. Yagdjian. Weakly hyperbolic equations with fast oscillating coefficients. Osaka J. Math., 36(2):437–464, 1999.MathSciNetGoogle Scholar
  62. [62]
    E. Schrohe. Spaces of weighted symbols and weighted Sobolev spaces on manifolds. In Pseudo-differential operators, volume 1256 of Lecture Notes in Math., pages 360–377, Berlin, 1987. Springer.zbMATHMathSciNetGoogle Scholar
  63. [63]
    B.-W. Schulze. Pseudo-differential operators on manifolds with edges. In B.-W. Schulze and H. Triebel, editors, Symposium “Partial Differential Equations”, Holzhau 1988, volume 112 of Teubner-Texte zur Mathematik, pages 259–287, Leipzig, 1989. Teubner.Google Scholar
  64. [64]
    B.-W. Schulze. Boundary Value Problems and Singular Pseudo-differential Operators. Wiley Ser. Pure Appl. Math. J. Wiley, Chichester, 1998.Google Scholar
  65. [65]
    J. Seiler. Continuity of edge and corner pseudo-differential operators. Math. Nachr., 205:163–182, 1999.zbMATHMathSciNetGoogle Scholar
  66. [66]
    K. Shinkai. Stokes multipliers and a weakly hyperbolic operator. Comm. Partial Differential Equations, 16:667–682, 1991.zbMATHMathSciNetGoogle Scholar
  67. [67]
    J. Sjöstrand. Parametrices for pseudodifferential operators with multiple characteristics. Ark. Mat., 12:85–130, 1974.zbMATHMathSciNetGoogle Scholar
  68. [68]
    H. Tahara. Singular hyperbolic systems. I. Existence, uniqueness, and differentiability. J. Fac. Sci. Univ. Tokyo Sect. IA Math., 26:213–238, 1979. II. Pseudodifferential operators with a parameter and their applications to singular hyperbolic systems. J. Fac. Sci. Univ. Tokyo Sect. IA Math. 26:391–412, 1979. III. On the Cauchy problem for Fuchsian hyperbolic partial differential equationss. J. Fac. Sci. Univ. Tokyo Sect. IA Math. 27:465–507, 1980. V. Asymptotic expansions for Fuchsian hyperbolic partial differential equations. J. Math. Soc. Japan 36:449–473, 1984.zbMATHMathSciNetGoogle Scholar
  69. [69]
    K. Taniguchi and Y. Tozaki. A hyperbolic equation with double characteristics which has a solution with branching singularities. Math. Japon., 25:279–300, 1980.MathSciNetGoogle Scholar
  70. [70]
    M. E. Taylor. Pseudodifferential Operators, volume 34 of Princeton Math. Ser. Princeton Univ. Press, Princeton, NJ, 1981.Google Scholar
  71. [71]
    J. Vaillant. Systèmes fortement hyperboliques 4 × 4, dimension réduite et symétrie. Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4), 29:839–890, 2000.MathSciNetGoogle Scholar
  72. [72]
    I. Witt. A calculus for a class of finitely degenerate pseudodifferential operators. In R. Picard, M. Reissig, and W. Zajaczkowski, editors, Evolution Equations: Propagation Phenomena — Global Existence — Influence of Non-linearities, volume 60 of Banach Center Publ., pages 161–189. Polish Acad. Sci., Warszawa, 2003.Google Scholar
  73. [73]
    K. Yagdjian. The Cauchy Problem for Hyperbolic Operators. Multiple Characteristics, Micro-Local Approach, volume 12 of Math. Topics. Akademie Verlag, Berlin, 1997.Google Scholar
  74. [74]
    A. Yoshikawa. Construction of a parametrix for the Cauchy problem of some weakly hyperbolic equation I. Hokkaido Math. J., 6:313–344, 1977. II. Hokkaido Math. J., 7:1–26, 1978. III. Hokkaido Math. J. 7:127–141, 1978.zbMATHMathSciNetGoogle Scholar

Copyright information

© Birkhäuser Verlag Basel/Switzerland 2005

Authors and Affiliations

  • Michael Dreher
    • 1
  • Ingo Witt
    • 2
  1. 1.Fachbereich Mathematik und StatistikUniversität KonstanzKonstanzGermany
  2. 2.Institut für MathematikUniversität PotsdamPotsdamGermany

Personalised recommendations