Design and selection of vaccine adjuvants: principles and practice

  • Carl R. Alving
  • Gary R. Matyas
Part of the Birkhäuser Advances in Infectious Diseases BAID book series (BAID)


  1. 1.
    Glenny AT, Pope CG, Waddington H, Wallace U (1926) Immunological Notes. XVII–XXIV. J Pathol Bacteriol 29: 31–40Google Scholar
  2. 2.
    Aprile MA, Wardlaw, AC (1966) Aluminium compounds as adjuvants for vaccines and toxoids in man: A review. Can J Publ Hlth 57: 343–354Google Scholar
  3. 3.
    Gupta RK (1998) Aluminum compounds as vaccine adjuvants. Adv Drug Delivery Rev 32: 155–172CrossRefGoogle Scholar
  4. 4.
    Lima KM, dos Santos SA, Rodrigues Jr JM, Silva CL (2004) Vaccine adjuvant: it makes the difference. Vaccine 22: 2374–2379PubMedCrossRefGoogle Scholar
  5. 5.
    Ahlers JD, Dunlop N, Alling DW, Nara PL, Berzofsky JA (1997) Cytokine-in-adjuvant steering of the immune response phenotype to HIV-1 vaccine constructs. Granulocyte-macrophage colony-stimulating factor and TNF-α synergize with IL-12 to enhance induction of cytotoxic t lymphocytes. J Immunol 158: 3947–3958PubMedGoogle Scholar
  6. 6.
    Elson CO, Ealding W (1984) Cholera toxin feeding did not induce oral tolerance in mice and abrogated oral tolerance to an unrelated protein antigen. J Immunol 133: 2892–2897PubMedGoogle Scholar
  7. 7.
    Snider DP (1995) The mucosal adjuvant activities of ADP-ribosylating bacterial enterotoxins. Crit Rev Immunol 15: 317–348PubMedGoogle Scholar
  8. 8.
    Glenn GM, Rao M, Matyas GR, Alving CR (1998) Skin immunization made possible by cholera toxin. Nature 391: 851PubMedCrossRefGoogle Scholar
  9. 9.
    Glenn GM, Scharton-Kersten T, Vassell R, Matyas GR, Alving CR (1999) Transcutaneous immunization with bacterial ADP-ribosylating exotoxins as antigens and adjuvants. Infect Immun 67: 1100–1106PubMedGoogle Scholar
  10. 10.
    Kawamura YI, Kawashima R, Shirai Y, Kato R, Hambata T, Yamamoto M, Furukawa K, Fujihashi K, McGhee JR, Hayashi H et al (2003) Cholera toxin activates dendritic cells through dependence on GM1-ganglioside which is mediated by NF-κB translocation. Eur J Immunol 33: 3205–3212PubMedCrossRefGoogle Scholar
  11. 11.
    Gupta RK, Relyveld EH, Lindblad EB, Bizzini B, Ben-Efraim S, Gupta CK (1993) Adjuvants — a balance between toxicity and adjuvanticity. Vaccine 11: 293–306PubMedCrossRefGoogle Scholar
  12. 12.
    Edelman R (1980) Vaccine adjuvants. Rev Infect Dis 2: 370–383PubMedGoogle Scholar
  13. 13.
    Chang JCC, Diveley JP, Savary JR, Jensen FC (1998) Adjuvant activity of incomplete Freund’s adjuvant. Adv Drug Deliv Rev 32: 173–186PubMedCrossRefGoogle Scholar
  14. 14.
    Davenport FM (1968) Seventeen years’ experience with mineral oil adjuvant influenza virus vaccines. Ann Allergy 26: 288–292PubMedGoogle Scholar
  15. 15.
    Stuart-Harris CH (1969) Adjuvant influenza vaccines. Bull WHO 41: 617–621PubMedGoogle Scholar
  16. 16.
    Alving CR (2002) Design and selection of vaccine adjuvants: animal models and human trials. Vaccine 20: S56–S64PubMedCrossRefGoogle Scholar
  17. 17.
    Podda A (2001) The adjuvanted influenza vaccines with novel adjuvants: experience with the MF59-adjuvanted vaccine. Vaccine 19: 2673–2680PubMedCrossRefGoogle Scholar
  18. 18.
    Frey S, Poland G, Percell S, Podda A (2003) Comparison of the safety, tolerability, and immunogenicity of a MF59-adjuvanted influenza vaccine and a non-adjuvanted influenza vaccine in non-elderly adults. Vaccine 21: 4234–4237PubMedCrossRefGoogle Scholar
  19. 19.
    Alonso PL, Sacarlal J, Aponte JJ, Leach A, Macete E, Milman J, Mandomando I, Spiessens B, Guinovart C, Espasa M et al (2004) Efficacy of the RTS,S/AS02A vaccine against Plasmodium falciparum infection and disease in young African children: randomised controlled trial. Lancet 364: 1411–1429PubMedGoogle Scholar
  20. 20.
    Pearson CM (1956) Development of arthritis, periarthritis and periostitis in rats given adjuvants. Proc Soc Exp Biol Med 91: 95–101PubMedGoogle Scholar
  21. 21.
    Taurog JD, Argentieri DC, McReynolds RA (1988) Adjuvant arthritis. Meth Enzymol 162: 339–355PubMedGoogle Scholar
  22. 22.
    Durai M, Kim HR, Moudgil KD (2004) The regulatory C-terminal determinants within mycobacterial heat shock protein 65 are cryptic and cross-reactive with the dominant self homologs: Implications for the pathogenesis of autoimmune arthritis. J Immunol 173: 181–188PubMedGoogle Scholar
  23. 23.
    Kleinau S, Erlandsson H, Klareskog L (1994) Percutaneous exposure of adjuvant oil causes arthritis in DA rats. Clin Exp Immunol 96: 281–284PubMedGoogle Scholar
  24. 24.
    Salk JE, Contakos M, Laurent AM, Sorensen M, Rapalski AJ, Simmons IH, Sandberg H (1953) Use of adjuvants in studies on influenza immunization. 3. Degree of persistence of antibody in human subjects two years after vaccination. J Am Med Assn 151: 1169–1175Google Scholar
  25. 25.
    Beebe GW, Simon AH, Vivona S (1964) Follow-up study on army personnel who received adjuvant influenza virus vaccine 1951–1953. Am J Med Sci 247: 385–407PubMedGoogle Scholar
  26. 26.
    Beebe GW, Simon AH, Vivona S (1972) Long-term mortality follow-up of army recruits who received adjuvant influenza virus vaccine in 1951–1953. Am J Epidemiol 95: 337–346PubMedGoogle Scholar
  27. 27.
    Page WF, Norman JE, Benenson AS (1993) Long-term followup of army recruits immunized with Freund’s incomplete adjuvanted vaccine. Vaccine Res 2: 141–149Google Scholar
  28. 28.
    Baylor NW, Egan W, Richman P (2002) Aluminum salts in vaccines — US perspective. Vaccine 20: S18–S23PubMedCrossRefGoogle Scholar
  29. 29.
    Wittayanukulluk A, Jiang D, Regnier FE, Hem SL (2004) Effect of microenvironment pH of aluminum hydroxide adjuvant on the chemical stability of adsorbed antigen. Vaccine 22: 1172–1176PubMedCrossRefGoogle Scholar
  30. 30.
    Gupta RK, Rost BE, Relyveld E, Siber GR (1995) Adjuvant properties of aluminum and calcium compounds. In: Powell MF, Newman MJ (eds): Vaccine design, the subunit and adjuvant approach. New York: Plenum Press, 229–248Google Scholar
  31. 31.
    Jefferson T, Rudin M, Di Pietrantonj C (2004) Adverse events after immunisation with aluminium-containing DTP vaccines: systematic review of the evidence. Lancet Infect Dis 4: 84–90PubMedGoogle Scholar
  32. 32.
    Shirodkar S, Hutchinson RL, Perry DL, White JL, Hem SL (1990) Aluminum compounds used as adjuvants in vaccines. Pharmaceut Res 7: 1282–1288CrossRefGoogle Scholar
  33. 33.
    Wassef NM, Alving CR, Richards RL (1994) Liposomes as carriers for vaccines. Immunomethods 4: 217–222PubMedCrossRefGoogle Scholar
  34. 34.
    Hem SL, White JL (1995) Structure and properties of aluminum-containing adjuvants. Pharm Biotech 6: 249–276Google Scholar
  35. 35.
    Seeber SJ, White JL, Hem SL (1991) Solubilization of aluminum-containing adjuvants by constituents of interstitial fluid. J Parenteral Sci Technol 45: 156–159Google Scholar
  36. 36.
    Heimlich JM, Regnier FE, White JL, Hem SL (1999) The in vitro displacement of adsorbed model antigens from aluminium-containing adjuvants by interstitial proteins. Pharm Biotech 17: 2873–2881Google Scholar
  37. 37.
    Iyer S, HogenEsch H, Hem SL (2003) Relationship between the degree of antigen adsorption to aluminum hydroxide adjuvant in interstitial fluid and antibody production. Vaccine 21: 1219–1223PubMedCrossRefGoogle Scholar
  38. 38.
    Morefield GL, HogenEsch H, Robinson JP, Hem SL (2004) Distribution of adsorbed antigen in mono-valent and combination vaccines. Vaccine 22: 1973–1984PubMedCrossRefGoogle Scholar
  39. 39.
    Burrell LS, White JL, Hem SL (2000) Stability of aluminium-containing adjuvants during aging at room temperature. Vaccine 18: 2188–2192PubMedCrossRefGoogle Scholar
  40. 40.
    Seeber SJ, White JL, Hem SL (1991) Predicting the adsorption of proteins by aluminium-containing adjuvants. Vaccine 9: 201–203PubMedCrossRefGoogle Scholar
  41. 41.
    Callahan PM, Shorter AL, Hem SL (1991) The importance of surface charge in the optimization of antigen-adjuvant interactions. J Pharmaceut Res 8: 851–858Google Scholar
  42. 42.
    Feldkamp JR, Shah DN, Meyer SL, White JL, Hem SL (1981) Effect of adsorbed carbonate on surface charge characteristics and physical properties of aluminum hydroxide gel. J Pharmaceut Sci 70: 638–640Google Scholar
  43. 43.
    Rinella Jr JV, White JL, Hem SL (1996) Treatment of aluminium hydroxide adjuvant to optimize the adsorption of basic proteins. Vaccine 14: 298–300PubMedCrossRefGoogle Scholar
  44. 44.
    Iyer S, Robinett RSR, HogenEsch H, Hem SL (2004) Mechanism of adsorption of hepatitis B surface antigen by aluminum hydroxide adjuvant. Vaccine 22: 1475–1479PubMedCrossRefGoogle Scholar
  45. 45.
    Alving CR, Shichijo S, Mattsby-Baltzer I, Richards RL, Wassef NM (1993) Preparation and use of liposomes in immunological studies. In: Gregoriadis G (ed): Liposome technology, 2nd edition, Vol III, Interactions of liposomes with the biological milieu. Boca Raton: CRC Press, 317–343Google Scholar
  46. 46.
    Hem SL (2002) Elimination of aluminum adjuvants. Vaccine 20(Suppl 3): S40–S43PubMedGoogle Scholar
  47. 47.
    Gupta RK, Siber GR (1995) Adjuvants for human vaccines — current status, problems and future prospects. Vaccine 13: 1263–1276PubMedGoogle Scholar
  48. 48.
    Frost L, Johansen P, Pedersen S, Veien N, Østergaard PA, Nielsen MH (1985) Persistent subcutaneous nodules in children hyposensitized with aluminium-containing allergen extracts. Allergy 40: 368–372PubMedGoogle Scholar
  49. 49.
    Pittman PR (2002) Aluminum-containing vaccine associated adverse events: role of route of administration and gender. Vaccine 20: S48–S50PubMedGoogle Scholar
  50. 50.
    Mutsch M, Zhou W, Rhodes P, Bopp M, Chen RT, Linder T, Spyr C, Steffen R (2004) Use of the inactivated intranasal influenza vaccine and the risk of Bell’s palsy in Switzerland. N Engl J Med 350: 896–903PubMedCrossRefGoogle Scholar
  51. 51.
    Couch RB (2004) Nasal vaccination, Escherichia coli enterotoxin, and Bell’s palsy. N Engl J Med 350: 860–861PubMedCrossRefGoogle Scholar
  52. 52.
    Eidels L, Proia RL, Hart DA (1983) Membrane receptors for bacterial toxins. Microbiol Rev 47: 596–620PubMedGoogle Scholar
  53. 53.
    Takada H, Kotani S (1989) Structural requirements of lipid A for endotoxicity and other biological activities. CRC Crit Rev Microbiol 16: 477–523CrossRefGoogle Scholar
  54. 54.
    Alving CR (1993) Lipopolysaccharide, lipid A, and liposomes containing lipid A as immunologic adjuvants. Immunobiol 187: 430–446Google Scholar
  55. 55.
    Richards RL, Swartz Jr GM, Schultz C, Hayre MD, Ward GS, Ballou WR, Chulay JD, Hockmeyer WT, Berman SL, Alving CR (1989) Immunogenicity of liposomal malaria sporozoite antigen in monkeys: adjuvant effects of aluminum hydroxide and nonpyrogenic liposomal lipid A. Vaccine 7: 506–512PubMedCrossRefGoogle Scholar
  56. 56.
    Fries LF, Gordon DM, Richards RL, Egan JE, Hollingdale MR, Gross M, Silverman C, Alving CR (1992) Liposomal malaria vaccine in humans: a safe and potent adjuvant strategy. Proc Natl Acad Sci USA 89: 358–362PubMedGoogle Scholar
  57. 57.
    Calarota SA, Weiner DB (2004) Enhancement of human immunodeficiency virus type 1-DNA vaccine potency through incorporation of T-helper 1 molecular adjuvants. Immunol Rev 199: 84–99PubMedCrossRefGoogle Scholar
  58. 58.
    Toka FN, Pack CD, Rouse BT (2004) Molecular adjuvants for mucosal immunity. Immunol Rev 199: 100–112PubMedCrossRefGoogle Scholar
  59. 59.
    Pizza M, Giuliani MM, Fontana MR, Monaci E, Douce G, Dougan G, Mills KHG, Rappuoli R, Del Giudice G (2001) Mucosal vaccines: non-toxic derivatives of LT and CT as mucosal adjuvants. Vaccine 19: 2534–2541PubMedCrossRefGoogle Scholar
  60. 60.
    Glenn GM, Taylor DN, Li X, Frankel S, Montemarano A, Alving CR (2000) Transcutaneous immunization: A human vaccine delivery strategy using a patch. Nature Med 6: 1403–1406PubMedGoogle Scholar
  61. 61.
    Belyakov IM, Hammond SA, Ahlers JD, Glenn GM, Berzofsky JA (2004) Transcutaneous immunization induces mucosal CTLs and protective immunity by migration of primed skin dendritic cells. J Clin Invest 113: 998–1007PubMedCrossRefGoogle Scholar
  62. 62.
    Güereña-Burgueño F, Hall ER, Taylor DN, Cassels FJ, Scott DA, Wolf MK, Roberts ZJ, Nesterova GV, Alving CR, Glenn GM (2002) Safety and immunogenicity of a prototype enterotoxigenic Escherichia coli vaccine administered transcutaneously. Infect Immun 70: 1874–1880PubMedGoogle Scholar
  63. 63.
    Nossal GJV (1999) Vaccines. In: Paul WE (ed): Fundamental immunology. Philadelphia: Lippincott-Raven, 1387–1425Google Scholar
  64. 64.
    Pulendran B (2004) Modulating vaccine responses with dendritic cells and Toll-like receptors. Immunol Rev 199: 227–250PubMedCrossRefGoogle Scholar
  65. 65.
    Goldenthal KL, Cavagnaro JA, Alving CR, Vogel FR (1993) Safety evaluation of vaccine adjuvants: National Cooperative Vaccine Development Meeting Working Group. AIDS Res Hum Retrovir 9(Suppl 1): S47–S51Google Scholar
  66. 66.
    Sesardic D, Dobbelaer R (2004) European union regulatory developments for new vaccine adjuvants and delivery systems. Vaccine 22: 2452–2456PubMedCrossRefGoogle Scholar
  67. 67.
    Kenney RT, Edelman R (2004) Adjuvants for the future. In: Levine MM, Kaper JB, Rappuoli R, Liu MA, Good MF (eds): New generation vaccines, 3rd edition. New York: Marcel Dekker, 213–223Google Scholar
  68. 68.
    Glück R, Mischler R, Finkel B, Que JU, Scarpa B, Cryz Jr SJ (1994) Immunogenicity of new virosome influenza vaccine in elderly people. Lancet 344: 160–163PubMedGoogle Scholar
  69. 69.
    Sondak VK, Sosman JA (2003) Results of clinical trials with an allogenic melanoma tumor lysate vaccine: Melacine. Semin Cancer Biol 13: 409–415PubMedCrossRefGoogle Scholar
  70. 70.
    Heppner DG, Gordon DM, Gross M, Wellde B, Leitner W, Krzych U, Schneider I, Wirtz RA, Richards RL, Trofa A et al (1996) Safety, immunogenicity and efficacy of plasmodium falciparum repeatless circumsporozoite protein vaccine encapsulated in liposomes. J Inf Dis 174: 361–366Google Scholar
  71. 71.
    McElrath MJ (1995) Selection of potent immunological adjuvants for vaccine construction. Sem Cancer Biol 6: 375–385Google Scholar
  72. 72.
    Harris DT, Matyas GR, Gomella LG, Taylor E, Winship MD, Spitler LE, Mastrangelo MJ (1999) Immunologic approaches to the treatment of prostate cancer. Sem Oncol 26: 439–447Google Scholar
  73. 73.
    Reid CDL, Stackpole A, Meager A, Tikerpae J (1992) Interactions of tumor necrosis factor with granulocyte-macrophage colony-stimulating factor and other cytokines in the regulation of dendritic cell growth in vitro from early bipotent CD34+ progenitors in human bone marrow. J Immunol 149: 2681–2688PubMedGoogle Scholar
  74. 74.
    Dranoff G, Jaffee E, Lazenby A, Golumbek P, Levitsky H, Brose K, Jackson V, Hamada H, Pardoll D, Mulligan RC (1993) Vaccination with irradiated tumor cells engineered to secrete murine granulocyte-macrophage colony-stimulating factor stimulates potent, specific, and long-lasting anti-tumor immunity. Proc Natl Acad Sci USA 90: 3539–3543PubMedGoogle Scholar
  75. 75.
    Samanci A, Yi Q, Fagerberg J, Strigård K, Smith G, Rudén U, Wahren B, Mellsted H (1998) Pharmacological administration of granulocyte/marcophage-colony stimulating factor is of significant importance for the induction of a strong humoral and cellular response in patients immunized with recombinant carcinoembryonic antigen. Cancer Immunol Immunother 47: 131–142PubMedCrossRefGoogle Scholar
  76. 76.
    Disis ML, Bernhard H, Shiota FM, Hand SL, Gralow JR, Huseby ES, Gillis S, Cheever MA (1996) Granulocyte-macrophage colony-stimulating factor: an effective adjuvant for protein and peptide-based vaccines. Blood 88: 202–210PubMedGoogle Scholar
  77. 77.
    Ragnhammar P, Fagerberg J, Frödin JE, Wersäll P, Hansson LO, Mellstedt H (1995) Granulocyte/macrophage-colony-stimulating factor augments the induction of antibodies, especially anti-idiotypic antibodies, to therapeutic monoclonal antibodies. Cancer Immunol Immunother 40: 367–375PubMedGoogle Scholar
  78. 78.
    Meidenbauer N, Gooding W, Spitler L, Harris D, Whiteside TL (2002) Recovery of zeta-chain expression and changes in spontaneous IL-10 production after PSA-based vaccines in patients with prostate cancer. Br J Cancer 86: 168–178PubMedCrossRefGoogle Scholar
  79. 79.
    Berd D, Mastrangelo MJ, Engstrom PF, Paul A, Maguire H (1982) Augmentation of the human immune response by cyclophosphamide. Cancer Res 42: 4862–4866PubMedGoogle Scholar
  80. 80.
    Berd D, Maguire Jr HC, Mastrangelo MJ (1986) Induction of cell-mediated immunity to autologous melanoma cells and regression of metastases after treatment with a melanoma cell baccine preceded by cyclophosphamie. Cancer Res 46: 2572–2577PubMedGoogle Scholar
  81. 81.
    Hanna MG Jr, Peters LC, Hoover HC Jr (1989) Fundamentals of active specific immunotherapy of cancer using BCG-tumor cell vaccines. Prog Clin Biol Res 310: 51–65PubMedGoogle Scholar
  82. 82.
    Leong SP, Enders-Zohr P, Zhou YM, Stuntebeck S, Habib FA, Allen RE Jr, Sagebiel RW, Glassberf AB, Lowenberg DW, Hayes FA (1999) Recombinant human granulocyte macrophage-colony stimulating factor (rhGM-CSF) and autologous melanoma vaccine mediate tumor regression in patients with metastatic melanoma. J Immunother 22: 166–174PubMedCrossRefGoogle Scholar
  83. 83.
    Muderhwa JM, Matyas GR, Spitler LE, Alving CR (1999) Oil-in-water liposomal emulsions: characterization and potential use in vaccine delivery. J Pharm Sci 88: 1332–1339PubMedCrossRefGoogle Scholar
  84. 84.
    Matyas GR, Muderhwa JM, Alving CR (2003) Oil-in-water liposomal emulsions for vaccine delivery. Meth Enzymol 373: 34–50PubMedGoogle Scholar
  85. 85.
    Lotze MT, Rosenberg SA (1991) Interleukin-2: clinical applications. In: DeVita J, Hellman S, Rosenberg SA (eds): Biologic therapy of cancer. JD Lippencott, Philadelphia, 159–177Google Scholar
  86. 86.
    Hladik F, Tratkiewicz JA, Tilg H, Vogel W, Schwulera V, Krönke M, Aulitzky WE, Huber C (1999) Biologic activity of low dosage IL-2 treatment in vivo. Molecular assessment of cytokine network interaction. J Immunol 153: 1449–1454Google Scholar
  87. 87.
    Meidenbauer N, Harris DT, Spitler LE, Whiteside TL (2000) Generation of PSA-reactive effector cells after vaccination with a PSA-based vaccine in patients with prostate cancer. The Prostate 43: 88–100PubMedCrossRefGoogle Scholar
  88. 88.
    Neidhart J, Allen KO, Barlow DL, Carpenter M, Shaw DR, Triozzi PL, Conry RM (2004) Immunization of colorectal cancer patients with recombinant baculovirus-drived KSA (Ep-CAM) formulated with monophosphoryl lipid A in liposomal emulsion, with and without granulocyte-macrophage colony factor. Vaccine 22: 773–780PubMedCrossRefGoogle Scholar

Copyright information

© Birkhäuser Verlag 2005

Authors and Affiliations

  • Carl R. Alving
    • 1
  • Gary R. Matyas
    • 1
  1. 1.Department of Vaccine Production and Delivery, Division of RetrovirologyWalter Reed Army Institute of Research, U.S. Military HIV Research ProgramRockvilleUSA

Personalised recommendations