TRPV1 in gut function, abdominal pain and functional bowel disorders

  • Peter Holzer
Part of the Progress in Inflammation Research book series (PIR)


Nerve Growth Factor Irritable Bowel Syndrome Sensory Neuron Irritable Bowel Syndrome Patient Irritable Bowel Syndrome Symptom 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Jordt SE, Julius D (2002) Molecular basis for species-specific sensitivity to “hot” chili peppers. Cell 108: 421–430PubMedCrossRefGoogle Scholar
  2. 2.
    Holzer P (2002) Sensory neurone responses to mucosal noxae in the upper gut: relevance to mucosal integrity and gastrointestinal pain. Neurogastroenterol Motil 14: 459–475PubMedCrossRefGoogle Scholar
  3. 3.
    Clapham DE (2003) TRP channels as cellular sensors. Nature 426: 517–524PubMedCrossRefGoogle Scholar
  4. 4.
    Caterina MJ, Schumacher MA, Tominaga M, Rosen TA, Levine JD, Julius D (1997) The capsaicin receptor: a heat-activated ion channel in the pain pathway. Nature 389: 816–824PubMedGoogle Scholar
  5. 5.
    Jordt SE, Bautista DM, Chuang HH, McKemy DD, Zygmunt PM, Högestätt ED, Meng ID, Julius D (2004) Mustard oils and cannabinoids excite sensory nerve fibers through the TRP channel ANKTM1. Nature 427: 260–265PubMedCrossRefGoogle Scholar
  6. 6.
    McKemy DD, Neuhausser WM, Julius D (2002) Identification of a cold receptor reveals a general role for TRP channels in thermosensation. Nature 416: 52–58PubMedCrossRefGoogle Scholar
  7. 7.
    Peier AM, Moqrich A, Hergarden AC, Reeve AJ, Andersson DA, Story GM, Earley TJ, Dragoni I, McIntyre P, Bevan S, Patapoutian A (2002) A TRP channel that senses cold stimuli and menthol. Cell 108: 705–715PubMedCrossRefGoogle Scholar
  8. 8.
    Zhang Y, Hoon MA, Chandrashekar J, Mueller KL, Cook B, Wu D, Zuker CS, Ryba NJ (2003) Coding of sweet, bitter, and umami tastes: different receptor cells sharing similar signaling pathways. Cell 112: 293–301PubMedCrossRefGoogle Scholar
  9. 9.
    Caterina MJ, Julius D (2001) The vanilloid receptor: a molecular gateway to the pain pathway. Annu Rev Neurosci 24: 487–517PubMedCrossRefGoogle Scholar
  10. 10.
    Di Marzo V, Blumberg PM, Szallasi A (2002) Endovanilloid signaling in pain. Curr Opin Neurobiol 12: 372–379PubMedGoogle Scholar
  11. 11.
    Gunthorpe MJ, Benham CD, Randall A, Davis JB (2002) The diversity in the vanilloid (TRPV) receptor family of ion channels. Trends Pharmacol Sci 23: 183–191PubMedCrossRefGoogle Scholar
  12. 12.
    Huang SM, Bisogno T, Trevisani M, Al-Hayani A, De Petrocellis L, Fezza F, Tognetto M, Petros TJ, Krey JF, Chu CJ et al (2002) An endogenous capsaicin-like substance with high potency at recombinant and native vanilloid VR1 receptors. Proc Natl Acad Sci USA 99: 8400–8405PubMedGoogle Scholar
  13. 13.
    Hwang SW, Oh U (2002) Hot channels in airways: pharmacology of the vanilloid receptor. Curr Opin Pharmacol 2: 235–242PubMedGoogle Scholar
  14. 14.
    Trevisani M, Smart D, Gunthorpe MJ, Tognetto M, Barbieri M, Campi B, Amadesi S, Gray J, Jerman JC, Brough SJ et al (2002) Ethanol elicits and potentiates nociceptor responses via the vanilloid receptor-1. Nat Neurosci 5: 546–551PubMedCrossRefGoogle Scholar
  15. 15.
    Ahern GP (2003) Activation of TRPV1 by the satiety factor oleoylethanolamide. J Biol Chem 278: 30429–30434PubMedCrossRefGoogle Scholar
  16. 16.
    Chu CJ, Huang SM, De Petrocellis L, Bisogno T, Ewing SA, Miller JD, Zipkin RE, Daddario N, Appendino G, Di Marzo V, Walker JM (2003) N-oleoyldopamine, a novel endogenous capsaicin-like lipid that produces hyperalgesia. J Biol Chem 278: 13633–13639PubMedCrossRefGoogle Scholar
  17. 17.
    Bevan S, Geppetti P (1994) Protons: small stimulants of capsaicin-sensitive sensory nerves. Trends Neurosci 17: 509–512PubMedCrossRefGoogle Scholar
  18. 18.
    Holzer P (2003) Acid-sensitive ion channels in gastrointestinal function. Curr Opin Pharmacol 3: 618–625PubMedGoogle Scholar
  19. 19.
    Kollarik M, Undem BJ (2004) Activation of bronchopulmonary vagal afferent nerves with bradykinin, acid and vanilloid receptor agonists in wild-type and TRPV1-/- mice. J Physiol (London) 555: 115–123PubMedGoogle Scholar
  20. 20.
    Tominaga M, Caterina M, Malmberg AB, Rosen TA, Gilbert H, Skinner K, Raumann BE, Basbaum AI, Julius D (1998) The cloned capsaicin receptor integrates multiple painproducing stimuli. Neuron 21: 531–543PubMedCrossRefGoogle Scholar
  21. 21.
    Premkumar LS, Ahern GP (2000) Induction of vanilloid receptor channel activity by protein kinase C. Nature 408: 985–990PubMedCrossRefGoogle Scholar
  22. 22.
    Chuang HH, Prescott ED, Kong H, Shields S, Jordt SE, Basbaum AI, Chao MV, Julius D (2001) Bradykinin and nerve growth factor release the capsaicin receptor from PtdIns(4,5) P2-mediated inhibition. Nature 411: 957–962PubMedCrossRefGoogle Scholar
  23. 23.
    Moriyama T, Iida T, Kobayashi K, Higashi T, Fukuoka T, Tsumura H, Leon C, Suzuki N, Inoue K, Gachet C et al (2003) Possible involvement of P2Y2 metabotropic receptors in ATP-induced transient receptor potential vanilloid receptor 1-mediated thermal hypersensitivity. J Neurosci 23: 6058–6062PubMedGoogle Scholar
  24. 24.
    Reeh PW, Pethö G (2000) Nociceptor excitation by thermal sensitization — a hypothesis. Prog Brain Res 129: 39–50PubMedGoogle Scholar
  25. 25.
    Caterina MJ, Leffler A, Malmberg AB, Martin WJ, Trafton J, Petersen-Zeitz KR, Koltzenburg M, Basbaum AI, Julius D (2000) Impaired nociception and pain sensation in mice lacking the capsaicin receptor. Science 288: 306–313PubMedCrossRefGoogle Scholar
  26. 26.
    Davis JB, Gray J, Gunthorpe MJ, Hatcher JP, Davey PT, Overend P, Harries MH, Latcham J, Clapham C, Atkinson K et al (2000) Vanilloid receptor-1 is essential for inflammatory thermal hyperalgesia. Nature 405: 183–187PubMedCrossRefGoogle Scholar
  27. 27.
    Holzer P (1991) Capsaicin: cellular targets, mechanisms of action, and selectivity for thin sensory neurons. Pharmacol Rev 43: 143–201PubMedGoogle Scholar
  28. 28.
    Szallasi A, Blumberg PM (1999) Vanilloid (capsaicin) receptors and mechanisms. Pharmacol Rev 51: 159–212PubMedGoogle Scholar
  29. 29.
    Holzer P, Barthó L (1996). Sensory neurons in the intestine. In: P Geppetti, P Holzer (eds): Neurogenic inflammation. CRC Press, Boca Raton, 153–167Google Scholar
  30. 30.
    Holzer P (1998) Neural emergency system in the stomach. Gastroenterology 114: 823–839PubMedCrossRefGoogle Scholar
  31. 31.
    Geppetti P, Trevisani M (2004) Activation and sensitisation of the vanilloid receptor: role in gastrointestinal inflammation and function. Br J Pharmacol 141: 1313–1320PubMedCrossRefGoogle Scholar
  32. 32.
    Szolcsányi J (1982) Capsaicin type pungent agents producing pyrexia. In: AS Milton (ed): Pyretics and Antipyretics, Handbook of Experimental Pharmacology, Volume 60. Springer, Berlin, 437–478Google Scholar
  33. 33.
    Helliwell RJ, McLatchie LM, Clarke M, Winter J, Bevan S, McIntyre P (1998) Capsaicin sensitivity is associated with the expression of the vanilloid (capsaicin) receptor (VR1) mRNA in adult rat sensory ganglia. Neurosci Lett 250: 177–180PubMedCrossRefGoogle Scholar
  34. 34.
    Guo A, Vulchanova L, Wang J, Li X, Elde R (1999) Immunocytochemical localization of the vanilloid receptor 1 (VR1): relationship to neuropeptides, the P2X3 purinoceptor and IB4 binding sites. Eur J Neurosci 11: 946–958PubMedCrossRefGoogle Scholar
  35. 35.
    Michael GJ, Priestley JV (1999) Differential expression of the mRNA for the vanilloid receptor subtype 1 in cells of the adult rat dorsal root and nodose ganglia and its down-regulation by axotomy. J Neurosci 19: 1844–1854PubMedGoogle Scholar
  36. 36.
    Ichikawa H, Sugimoto T (2003) The co-expression of VR1 and VRL-1 in the rat vagal sensory ganglia. Brain Res 980: 293–296PubMedGoogle Scholar
  37. 37.
    Patterson LM, Zheng H, Ward SM, Berthoud HR (2003) Vanilloid receptor (VR1) expression in vagal afferent neurons innervating the gastrointestinal tract. Cell Tissue Res 311: 277–287PubMedGoogle Scholar
  38. 38.
    Ward SM, Bayguinov J, Won KJ, Grundy D, Berthoud HR (2003) Distribution of the vanilloid receptor (VR1) in the gastrointestinal tract. J Comp Neurol 465: 121–135PubMedCrossRefGoogle Scholar
  39. 39.
    Robinson DR, McNaughton PA, Evans ML, Hicks GA (2004) Characterization of the primary spinal afferent innervation of the mouse colon using retrograde labelling. Neurogastroenterol Motil 16: 113–124PubMedCrossRefGoogle Scholar
  40. 40.
    Schicho R, Florian W, Liebmann I, Holzer P, Lippe IT (2004) Increased expression of TRPV1 receptor in dorsal root ganglia by acid insult of the rat gastric mucosa. Eur J Neurosci 19: 1811–1818PubMedCrossRefGoogle Scholar
  41. 41.
    Zhang L, Jones S, Brody K, Costa M, Brookes SJ (2004) Thermosensitive transient receptor potential channels in vagal afferent neurons of the mouse. Am J Physiol Gastrointest Liver Physiol 286: G983–G991PubMedGoogle Scholar
  42. 42.
    Mezey E, Toth ZE, Cortright DN, Arzubi MK, Krause JE, Elde R, Guo A, Blumberg PM, Szallasi A (2000) Distribution of mRNA for vanilloid receptor subtype 1 (VR1), and VR1-like immunoreactivity, in the central nervous system of the rat and human. Proc Natl Acad Sci USA 97: 3655–3660PubMedCrossRefGoogle Scholar
  43. 43.
    Green T, Dockray GJ (1988) Characterization of the peptidergic afferent innervation of the stomach in the rat, mouse, and guinea-pig. Neuroscience 25: 181–193PubMedGoogle Scholar
  44. 44.
    Sternini C (1992) Enteric and visceral afferent CGRP neurons. Targets of innervation and differential expression patterns. Ann NY Acad Sci 657: 170–186PubMedGoogle Scholar
  45. 45.
    Perry MJ, Lawson SN (1998) Differences in expression of oligosaccharides, neuropeptides, carbonic anhydrase and neurofilament in rat primary afferent neurons retrogradely labelled via skin, muscle or visceral nerves. Neuroscience 85: 293–310PubMedCrossRefGoogle Scholar
  46. 46.
    Horie S, Yamamoto H, Michael GJ, Uchida M, Belai A, Watanabe K, Priestley JV, Murayama T (2004) Protective role of vanilloid receptor type 1 in HCl-induced gastric mucosal lesions in rats. Scand J Gastroenterol 39: 303–312PubMedCrossRefGoogle Scholar
  47. 47.
    Kulkarni-Narla A, Brown DR (2001) Opioid, cannabinoid and vanilloid receptor localization on porcine cultured myenteric neurons. Neurosci Lett 308: 153–156PubMedCrossRefGoogle Scholar
  48. 48.
    Anavi-Goffer S, McKay NG, Ashford ML, Coutts AA (2002) Vanilloid receptor type 1-immunoreactivity is expressed by intrinsic afferent neurones in the guinea-pig myenteric plexus. Neurosci Lett 319: 53–57PubMedCrossRefGoogle Scholar
  49. 49.
    Poonyachoti S, Kulkarni-Narla A, Brown DR (2002) Chemical coding of neurons expressing delta-and kappa-opioid receptor and type I vanilloid receptor immunoreactivities in the porcine ileum. Cell Tissue Res 307: 23–33PubMedCrossRefGoogle Scholar
  50. 50.
    Anavi-Goffer S, Coutts AA (2003) Cellular distribution of vanilloid VR1 receptor immunoreactivity in the guinea-pig myenteric plexus. Eur J Pharmacol 458: 61–71PubMedCrossRefGoogle Scholar
  51. 51.
    Chan CL, Facer P, Davis JB, Smith GD, Egerton J, Bountra C, Williams NS, Anand P (2003) Sensory fibers expressing capsaicin receptor TRPV1 in patients with rectal hypersensitivity and fecal urgency. Lancet 361: 385–391PubMedGoogle Scholar
  52. 52.
    Nozawa Y, Nishihara K, Yamamoto A, Nakano M, Ajioka H, Matsuura N (2001) Distribution and characterization of vanilloid receptors in the rat stomach. Neurosci Lett 309: 33–36PubMedCrossRefGoogle Scholar
  53. 53.
    Kato S, Aihara E, Nakamura A, Xin H, Matsui H, Kohama K, Takeuchi K (2003) Expression of vanilloid receptors in rat gastric epithelial cells: role in cellular protection. Biochem Pharmacol 66: 1115–1121PubMedCrossRefGoogle Scholar
  54. 54.
    Birder LA, Kanai AJ, de Groat WC, Kiss S, Nealen ML, Burke NE, Dineley KE, Watkins S, Reynolds IJ, Caterina MJ (2001) Vanilloid receptor expression suggests a sensory role for urinary bladder epithelial cells. Proc Natl Acad Sci USA 98: 13396–13401PubMedCrossRefGoogle Scholar
  55. 55.
    Birder LA, Nakamura Y, Kiss S, Nealen ML, Barrick S, Kanai AJ, Wang E, Ruiz G, De Groat WC, Apodaca G et al (2002) Altered urinary bladder function in mice lacking the vanilloid receptor TRPV1. Nat Neurosci 5: 856–860PubMedCrossRefGoogle Scholar
  56. 56.
    Takaki M, Nakayama S (1989) Effects of capsaicin on myenteric neurons of the guinea pig ileum. Neurosci Lett 105: 125–130PubMedCrossRefGoogle Scholar
  57. 57.
    Holzer P (1988) Local effector functions of capsaicin-sensitive sensory nerve endings: involvement of tachykinins, calcitonin gene-related peptide and other neuropeptides. Neuroscience 24: 739–768PubMedCrossRefGoogle Scholar
  58. 58.
    Maggi CA (1995) Tachykinins and calcitonin gene-related peptide (CGRP) as co-transmitters released from peripheral endings of sensory nerves. Prog Neurobiol 45: 1–98PubMedCrossRefGoogle Scholar
  59. 59.
    Holzer P, Maggi CA (1998) Dissociation of dorsal root ganglion neurons into afferent and efferent-like neurons. Neuroscience 86: 389–398PubMedGoogle Scholar
  60. 60.
    Holzer P, Livingston EH, Guth PH (1991) Sensory neurons signal for an increase in rat gastric mucosal blood flow in the face of pending acid injury. Gastroenterology 101: 416–423PubMedGoogle Scholar
  61. 61.
    Holzer P, Livingston EH, Saria A, Guth PH (1991) Sensory neurons mediate protective vasodilatation in rat gastric mucosa. Am J Physiol Gastrointest Liver Physiol 260: G363–G370Google Scholar
  62. 62.
    Manela FD, Ren J, Gao J, McGuigan JE, Harty RF (1995) Calcitonin gene-related peptide modulates acid-mediated regulation of somatostatin and gastrin release from rat antrum. Gastroenterology 109: 701–706PubMedCrossRefGoogle Scholar
  63. 63.
    Raybould HE, Sternini C, Eysselein VE, Yoneda M, Holzer P (1992) Selective ablation of spinal afferent neurons containing CGRP attenuates gastric hyperemic response to acid. Peptides 13: 249–254PubMedCrossRefGoogle Scholar
  64. 64.
    Schuligoi R, Jocic M, Heinemann A, Schöninkle E, Pabst MA, Holzer P (1998) Gastric acid-evoked c-fos messenger RNA expression in rat brainstem is signaled by capsaicin-resistant vagal afferents. Gastroenterology 115: 649–660PubMedCrossRefGoogle Scholar
  65. 65.
    Lamb K, Kang YM, Gebhart GF, Bielefeldt K (2003) Gastric inflammation triggers hypersensitivity to acid in awake rats. Gastroenterology 125: 1410–1418PubMedCrossRefGoogle Scholar
  66. 66.
    Tashima K, Nakashima M, Kagawa S, Kato S, Takeuchi K (2002) Gastric hyperemic response induced by acid back-diffusion in rat stomachs following barrier disruption-relation to vanilloid type-1 receptors. Med Sci Monit 8: BR157–BR163PubMedGoogle Scholar
  67. 67.
    Kagawa S, Aoi M, Kubo Y, Kotani T, Takeuchi K (2003) Stimulation by capsaicin of duodenal HCO3-secretion via afferent neurons and vanilloid receptors in rats: comparison with acid-induced HCO3-response. Dig Dis Sci 48: 1850–1856PubMedCrossRefGoogle Scholar
  68. 68.
    Kawabata A, Kinoshita M, Kuroda R, Kakehi K (2002) Capsazepine partially inhibits neurally mediated gastric mucus secretion following activation of protease-activated receptor. Clin Exp Pharmacol Physiol 29: 360–361PubMedCrossRefGoogle Scholar
  69. 69.
    Akiba Y, Guth PH, Engel E, Nastaskin I, Kaunitz JD (1999) Acid-sensing pathways of rat duodenum. Am J Physiol Gastrointest Liver Physiol 277: G268–G274Google Scholar
  70. 70.
    Nathan JD, Patel AA, McVey DC, Thomas JE, Prpic V, Vigna SR, Liddle RA (2001) Capsaicin vanilloid receptor-1 mediates substance P release in experimental pancreatitis. Am J Physiol Gastrointest Liver Physiol 281: G1322–G1328PubMedGoogle Scholar
  71. 71.
    McVey DC, Vigna SR (2001) The capsaicin VR1 receptor mediates substance P release in toxin A-induced enteritis in rats. Peptides 22: 1439–1446PubMedCrossRefGoogle Scholar
  72. 72.
    Kihara N, De La Fuente SG, Fujino K, Takahashi T, Pappas TN, Mantyh CR (2003) Vanilloid receptor-1 containing primary sensory neurones mediate dextran sulphate sodium-induced colitis in rats. Gut 52: 713–719PubMedCrossRefGoogle Scholar
  73. 73.
    McVey DC, Schmid PC, Schmid HH, Vigna SR (2003) Endocannabinoids induce ileitis in rats via the capsaicin receptor (VR1). J Pharmacol Exp Ther 304: 713–722PubMedCrossRefGoogle Scholar
  74. 74.
    Berthoud HR, Patterson LM, Willing AE, Mueller K, Neuhuber WL (1997) Capsaicinresistant vagal afferent fibers in the rat gastrointestinal tract: anatomical identification and functional integrity. Brain Res 746: 195–206PubMedCrossRefGoogle Scholar
  75. 75.
    Blackshaw LA, Page AJ, Partosoedarso ER (2000) Acute effects of capsaicin on gastrointestinal vagal afferents. Neuroscience 96: 407–416PubMedCrossRefGoogle Scholar
  76. 76.
    Berthoud HR, Lynn PA, Blackshaw LA (2001) Vagal and spinal mechanosensors in the rat stomach and colon have multiple receptive fields. Am J Physiol Regul Integr Comp Physiol 280: R1371–R1381PubMedGoogle Scholar
  77. 77.
    Maubach KA, Grundy D (1999) The role of prostaglandins in the bradykinin-induced activation of serosal afferents of the rat jejunum in vitro. J Physiol (London) 515: 277–285PubMedCrossRefGoogle Scholar
  78. 78.
    Su X, Wachtel RE, Gebhart GF (1999) Capsaicin sensitivity and voltage-gated sodium currents in colon sensory neurons from rat dorsal root ganglia. Am J Physiol Gastrointest Liver Physiol 277: G1180–G1188Google Scholar
  79. 79.
    Gonzalez R, Dunkel R, Koletzko B, Schusdziarra V, Allescher HD (1998) Effect of capsaicin-containing red pepper sauce suspension on upper gastrointestinal motility in healthy volunteers. Dig Dis Sci 43: 1165–1171PubMedCrossRefGoogle Scholar
  80. 80.
    Hammer J, Hammer HF, Eherer AJ, Petritsch W, Holzer P, Krejs GJ (1998) Intraluminal capsaicin does not affect fluid and electrolyte absorption in the human jejunum but does cause pain. Gut 43: 252–255PubMedGoogle Scholar
  81. 81.
    Rodriguez-Stanley S, Collings KL, Robinson M, Owen W, Miner PB (2000) The effects of capsaicin on reflux, gastric emptying and dyspepsia. Aliment Pharmacol Ther 14: 129–134PubMedCrossRefGoogle Scholar
  82. 82.
    Bortolotti M, Coccia G, Grossi G, Miglioli M (2002) The treatment of functional dyspepsia with red pepper. Aliment Pharmacol Ther 16: 1075–1082PubMedCrossRefGoogle Scholar
  83. 83.
    Drewes AM, Schipper KP, Dimcevski G, Petersen P, Gregersen H, Funch-Jensen P, Arendt-Nielsen L (2003) Gut pain and hyperalgesia induced by capsaicin: a human experimental model. Pain 104: 333–341PubMedCrossRefGoogle Scholar
  84. 84.
    Schmidt B, Hammer J, Holzer P, Hammer HF (2004) Chemical nociception in the jejunum induced by capsaicin. Gut 53: 1109–1116PubMedCrossRefGoogle Scholar
  85. 85.
    Laird JM, Martinez-Caro L, Garcia-Nicas E, Cervero F (2001) A new model of visceral pain and referred hyperalgesia in the mouse. Pain 92: 335–342PubMedCrossRefGoogle Scholar
  86. 86.
    Kawao N, Ikeda H, Kitano T, Kuroda R, Sekiguchi F, Kataoka K, Kamanaka Y, Kawabata A (2004) Modulation of capsaicin-evoked visceral pain and referred hyperalgesia by protease-activated receptors 1 and 2. J Pharmacol Sci 94: 277–285PubMedCrossRefGoogle Scholar
  87. 87.
    Agarwal MK, Bhatia SJ, Desai SA, Bhure U, Melgiri S (2002) Effect of red chillies on small bowel and colonic transit and rectal sensitivity in men with irritable bowel syndrome. Indian J Gastroenterol 21: 179–182PubMedGoogle Scholar
  88. 88.
    Schmulson MJ, Valdovinos MA, Milke P (2003) Chili pepper and rectal hyperalgesia in irritable bowel syndrome. Am J Gastroenterol 98: 1214–1215PubMedCrossRefGoogle Scholar
  89. 89.
    Shah SK, Abraham P, Mistry FP (2000) Effect of cold pressor test and a high-chili diet on rectosigmoid motility in irritable bowel syndrome. Indian J Gastroenterol 19: 161–164PubMedGoogle Scholar
  90. 90.
    Coelho AM, Vergnolle N, Guiard B, Fioramonti J, Bueno L (2002) Proteinases and proteinase-activated receptor 2: a possible role to promote visceral hyperalgesia in rats. Gastroenterology 122: 1035–1047PubMedCrossRefGoogle Scholar
  91. 91.
    Hoogerwerf WA, Zou L, Shenoy M, Sun D, Micci MA, Lee-Hellmich H, Xiao SY, Winston JH, Pasricha PJ (2001) The proteinase-activated receptor 2 is involved in nociception. J Neurosci 21: 9036–9042PubMedGoogle Scholar
  92. 92.
    Amadesi S, Nie J, Vergnolle N, Cottrell GS, Grady EF, Trevisani M, Manni C, Geppetti P, McRoberts JA, Ennes H et al (2004) Protease-activated receptor 2 sensitizes the capsaicin receptor transient receptor potential vanilloid receptor 1 to induce hyperalgesia. J Neurosci 24: 4300–4312PubMedCrossRefGoogle Scholar
  93. 93.
    Dai Y, Moriyama T, Higashi T, Togashi K, Kobayashi K, Yamanaka H, Tominaga M, Noguchi K (2004) Proteinase-activated receptor 2-mediated potentiation of transient receptor potential vanilloid subfamily 1 activity reveals a mechanism for proteinase-induced inflammatory pain. J Neurosci 24: 4293–4299PubMedCrossRefGoogle Scholar
  94. 94.
    Bhave G, Zhu W, Wang H, Brasier DJ, Oxford GS, Gereau RW (2002) cAMP-dependent protein kinase regulates desensitization of the capsaicin receptor (VR1) by direct phosphorylation. Neuron 35: 721–731PubMedCrossRefGoogle Scholar
  95. 95.
    Mohapatra DP, Nau C (2003) Desensitization of capsaicin-activated currents in the vanilloid receptor TRPV1 is decreased by the cyclic AMP-dependent protein kinase pathway. J Biol Chem 278: 50080–50090PubMedCrossRefGoogle Scholar
  96. 96.
    Numazaki M, Tominaga T, Takeuchi K, Murayama N, Toyooka H, Tominaga M (2003) Structural determinant of TRPV1 desensitization interacts with calmodulin. Proc Natl Acad Sci USA 100: 8002–8006PubMedCrossRefGoogle Scholar
  97. 97.
    Jung J, Shin JS, Lee SY, Hwang SW, Koo J, Cho H, Oh U (2004) Phosphorylation of vanilloid receptor 1 by Ca2+/calmodulin-dependent kinase II regulates its vanilloid binding. J Biol Chem 279: 7048–7054PubMedGoogle Scholar
  98. 98.
    Rosenbaum T, Gordon-Shaag A, Munari M, Gordon SE (2004) Ca2+/calmodulin modulates TRPV1 activation by capsaicin. J Gen Physiol 123: 53–62PubMedCrossRefGoogle Scholar
  99. 99.
    Lembeck F, Skofitsch G (1982) Visceral pain reflex after pretreatment with capsaicin and morphine. Naunyn-Schmiedeberg’s Arch Pharmacol 321: 116–122CrossRefGoogle Scholar
  100. 100.
    Plourde V, St.-Pierre S, Quirion R (1997) Calcitonin gene-related peptide in viscerosensitive response to colorectal distension in rats. Am J Physiol Gastrointest Liver Physiol 273: G191–G196Google Scholar
  101. 101.
    Delafoy L, Raymond F, Doherty AM, Eschalier A, Diop L (2003) Role of nerve growth factor in the trinitrobenzene sulfonic acid-induced colonic hypersensitivity. Pain 105: 489–497PubMedCrossRefGoogle Scholar
  102. 102.
    Jaggar SI, Scott HCF, James IF, Rice ASC (2001) The capsaicin analogue SDZ 249-665 attenuates the hyperreflexia and referred hyperalgesia associated with inflammation of the rat urinary bladder. Pain 89: 229–235PubMedCrossRefGoogle Scholar
  103. 103.
    Urban L, Campbell EA, Panesar M, Patel S, Chaudhry N, Kane S, Buchheit K, Sandells B, James IF (2000) In vivo pharmacology of SDZ 249-665, a novel, non-pungent capsaicin analogue. Pain 89: 65–74PubMedCrossRefGoogle Scholar
  104. 104.
    Cruz F (2004) Mechanisms involved in new therapies for overactive bladder. Urology 63(Suppl 1): 65–73PubMedGoogle Scholar
  105. 105.
    Lysy, J, Sistiery-Ittah M, Israelit Y, Shmueli A, Strauss-Liviatan N, Mindrul V, Keret D, Goldin E (2003) Topical capsaicin-a novel and effective treatment for idiopathic intractable pruritus ani: a randomised, placebo controlled, crossover study. Gut 52: 1323–1326PubMedCrossRefGoogle Scholar
  106. 106.
    Yiangou Y, Facer P, Dyer NH, Chan CL, Knowles C, Williams NS, Anand P (2001) Vanilloid receptor 1 immunoreactivity in inflamed human bowel. Lancet 357: 1338–1339PubMedCrossRefGoogle Scholar
  107. 107.
    Facer P, Knowles CH, Tam PK, Ford AP, Dyer N, Baecker PA, Anand P (2001) Novel capsaicin (VR1) and purinergic (P2X3) receptors in Hirschsprung’s intestine. J Pediatr Surg 36: 1679–1684PubMedCrossRefGoogle Scholar
  108. 108.
    Winter J (1998) Brain derived neurotrophic factor, but not nerve growth factor, regulates capsaicin sensitivity of rat vagal ganglion neurones. Neurosci Lett 241: 21–24PubMedCrossRefGoogle Scholar
  109. 109.
    Winston J, Toma H, Shenoy M, Pasricha PJ (2001) Nerve growth factor regulates VR-1 mRNA levels in cultures of adult dorsal root ganglion neurons. Pain 89: 181–186PubMedCrossRefGoogle Scholar
  110. 110.
    Ji RR, Samad TA, Jin SX, Schmoll R, Woolf CJ (2002) p38 MAPK activation by NGF in primary sensory neurons after inflammation increases TRPV1 levels and maintains heat hyperalgesia. Neuron 36: 57–68PubMedCrossRefGoogle Scholar
  111. 111.
    Bevan S, Hothi S, Hughes G, James IF, Rang HP, Shah K, Walpole CS, Yeats JC (1992) Capsazepine: a competitive antagonist of the sensory neurone excitant capsaicin. Br J Pharmacol 107: 544–552PubMedGoogle Scholar
  112. 112.
    Docherty RJ, Yeats JC, Piper AS (1997) Capsazepine block of voltage-activated calcium channels in adult rat dorsal root ganglion neurones in culture. Br J Pharmacol 121: 1461–1467PubMedGoogle Scholar
  113. 113.
    Holzer P (2004) Gastrointestinal pain in functional bowel disorders: sensory neurons as novel drug targets. Expert Opin Ther Targets 8: 107–123PubMedCrossRefGoogle Scholar

Copyright information

© Birkhäuser Verlag Basel/Switzerland 2005

Authors and Affiliations

  • Peter Holzer
    • 1
  1. 1.Department of Experimental and Clinical PharmacologyMedical University of GrazGrazAustria

Personalised recommendations