Advertisement

Structural determinants of TRPV1 functionality

  • Makoto Tominaga
Part of the Progress in Inflammation Research book series (PIR)

Keywords

Transient Receptor Potential Channel Vanilloid Receptor Capsaicin Receptor Transient Receptor Potential Vanilloid Subfamily Dependent Desensitization 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Caterina MJ, Schumacher MA, Tominaga M, Rosen TA, Levine JD, Julius D (1997) The capsaicin receptor: a heat-activated ion channel in the pain pathway. Nature 389: 816–824PubMedGoogle Scholar
  2. 2.
    Robinson RB, Siegelbaum SA (2003) Hyperpolarization-activated cation currents: from molecules to physiological function. Annu Rev Physiol 65: 453–480PubMedCrossRefGoogle Scholar
  3. 3.
    Sansom MS, Shrivastava IH, Bright JN, Tate J, Capener CE, Biggin PC (2002) Potassium channels: structures, models, simulations. Biochim Biophys Acta 1565: 294–307PubMedGoogle Scholar
  4. 4.
    Kaupp UB, Seifert R (2002) Cyclic nucleotide-gated ion channels. Physiol Rev 82:769–824PubMedGoogle Scholar
  5. 5.
    Montell C, Rubin GM (1989) Molecular characterization of the Drosophila trp locus: a putative integral membrane protein required for phototransduction. Neuron 2: 1313–1323PubMedCrossRefGoogle Scholar
  6. 6.
    Montell C, Birnbaumer L, Flockerzi V (2002) The TRP channels, a remarkably functional family. Cell 108: 595–598PubMedCrossRefGoogle Scholar
  7. 7.
    Clapham DE (2003) TRP channels as cellular sensors. Nature 426: 517–524PubMedCrossRefGoogle Scholar
  8. 8.
    Sedgwick SG, Smerdon SJ (1999) The ankyrin repeat: a diversity of interactions on a common structural framework. Trends Biochem Sci 24: 311–316PubMedCrossRefGoogle Scholar
  9. 9.
    Rosenbaum T, Gordon-Shaag A, Munari M, Gordon SE (2004) Ca2+/calmodulin modulates TRPV1 activation by capsaicin. J Gen Physiol 123: 53–62PubMedCrossRefGoogle Scholar
  10. 10.
    Harteneck C (2003) Proteins modulating TRP channel function. Cell Calcium 33: 303–310PubMedCrossRefGoogle Scholar
  11. 11.
    Kedei N, Szabo T, Lile JD, Treanor JJ, Olah Z, Iadarola MJ, Blumberg PM (2001) Analysis of the native quaternary structure of vanilloid receptor 1. J Biol Chem 276: 28613–28619PubMedCrossRefGoogle Scholar
  12. 12.
    Kuzhikandathil EV, Wang H, Szabo T, Morozova N, Blumberg PM, Oxford GS (2001) Functional analysis of capsaicin receptor (vanilloid receptor subtype 1) multimerization and agonist responsiveness using a dominant negative mutation. J Neurosci 21: 8697–8706PubMedGoogle Scholar
  13. 13.
    Smith GD, Gunthorpe MJ, Kelsell RE, Hayes PD, Reilly P, Facer P, Wright JE, Jerman JC, Walhin JP, Ooi L et al (2002) TRPV3 is a temperature-sensitive vanilloid receptorlike protein. Nature 418: 186–190PubMedGoogle Scholar
  14. 14.
    Liu L, Wang Y, Simon SA (1996) Capsaicin activated currents in rat dorsal root ganglion cells. Pain 64: 191–195PubMedCrossRefGoogle Scholar
  15. 15.
    Gunthorpe MJ, Harries MH, Prinjha RK, Davis JB, Randall A (2000) Voltage-and timedependent properties of the recombinant rat vanilloid receptor (rVR1). J Physiol 525: 747–759PubMedCrossRefGoogle Scholar
  16. 16.
    Premkumar LS, Agarwal S, Steffen D (2002) Single-channel properties of native and cloned rat vanilloid receptors. J Physiol 545: 107–117PubMedCrossRefGoogle Scholar
  17. 17.
    Tominaga M, Caterina MJ, Malmberg AB, Rosen TA, Gilbert H, Skinner K, Raumann BE, Basbaum AI, Julius D (1998) The cloned capsaicin receptor integrates multiple pain-producing stimuli. Neuron 21: 531–543PubMedCrossRefGoogle Scholar
  18. 18.
    Jung J, Hwang SW, Kwak J, Lee SY, Kang CJ, Kim WB, Kim D, Oh U (1999) Capsaicin binds to the intracellular domain of the capsaicin-activated ion channel. J Neurosci 19: 529–538PubMedGoogle Scholar
  19. 19.
    Zygmunt PM, Petersson J, Andersson DA, Chuang H, Sorgard M, Di Marzo V, Julius D, Hogestatt ED (1999) Vanilloid receptors on sensory nerves mediate the vasodilator action of anandamide. Nature 400: 452–457PubMedGoogle Scholar
  20. 20.
    Hwang SW, Cho H, Kwak J, Lee SY, Kang CJ, Jung J, Cho S, Min KH, Suh YG, Kim D et al (2000) Direct activation of capsaicin receptors by products of lipoxygenases: endogenous capsaicin-like substances. Proc Natl Acad Sci USA 97: 6155–6160PubMedGoogle Scholar
  21. 21.
    Huang SM, Bisogno T, Trevisani M, Al-Hayani A, De Petrocellis L, Fezza F, Tognetto M, Petros TJ, Krey JF, Chu CJ et al (2002) An endogenous capsaicin-like substance with high potency at recombinant and native vanilloid VR1 receptors. Proc Natl Acad Sci USA 99: 8400–8405PubMedGoogle Scholar
  22. 22.
    Jordt SE, Julius D (2002) Molecular basis for species-specific sensitivity to “hot” chili peppers. Cell 108: 421–430PubMedCrossRefGoogle Scholar
  23. 23.
    Jung J, Lee SY, Hwang SW, Cho H, Shin J, Kang YS, Kim S, Oh U (2002) Agonist recognition sites in the cytosolic tails of vanilloid receptor 1. J Biol Chem 277: 44448–44454PubMedGoogle Scholar
  24. 24.
    Welch JM, Simon SA, Reinhart PH (2000) The activation mechanism of rat vanilloid receptor 1 by capsaicin involves the pore domain and differs from the activation by either acid or heat. Proc Natl Acad Sci USA 97: 13889–13894PubMedCrossRefGoogle Scholar
  25. 25.
    Baumann TK, Martenson ME (2000) Extracellular protons both increase the activity and reduce the conductance of capsaicin-gated channels. J Neurosci 20: RC80PubMedGoogle Scholar
  26. 26.
    Jordt SE, Tominaga M, Julius D (2000) Acid potentiation of the capsaicin receptor determined by a key extracellular site. Proc Natl Acad Sci USA 97: 8134–8139PubMedCrossRefGoogle Scholar
  27. 27.
    Jordt SE, McKemy DD, Julius D (2003) Lessons from peppers and peppermint: the molecular logic of thermosensation. Curr Opin Neurobiol 13: 487–492PubMedCrossRefGoogle Scholar
  28. 28.
    Patapoutian A, Peier AM, Story GM, Viswanath V (2003) ThermoTRP channels and beyond: mechanisms of temperature sensation. Nat Rev Neurosci 4: 529–539PubMedCrossRefGoogle Scholar
  29. 29.
    Vlachova V, Teisinger J, Susankova K, Lyfenko A, Ettrich R, Vyklicky L (2003) Functional role of C-terminal cytoplasmic tail of rat vanilloid receptor 1. J Neurosci 23: 1340–1350PubMedGoogle Scholar
  30. 30.
    Numazaki M, Tominaga T, Toyooka H, Tominaga M (2002) Direct phosphorylation of capsaicin receptor VR1 by protein kinase Cepsilon and identification of two target serine residues. J Biol Chem 277: 13375–13378PubMedCrossRefGoogle Scholar
  31. 31.
    Tominaga M, Wada M, Masu M (2001) Potentiation of capsaicin receptor activity by metabotropic ATP receptors as a possible mechanism for ATP-evoked pain and hyperalgesia. Proc Natl Acad Sci USA 98: 6951–6956PubMedCrossRefGoogle Scholar
  32. 32.
    Voets T, Droogmans G, Wissenbach U, Janssens A, Flockerzi V, Nilius B (2004) The principle of temperature-dependent gating in cold-and heat-sensitive TRP channels. Nature 430: 748–754PubMedCrossRefGoogle Scholar
  33. 33.
    Szallasi A, Blumberg PM (1999) Vanilloid (Capsaicin) receptors and mechanisms. Pharmacol Rev 51: 159–212PubMedGoogle Scholar
  34. 34.
    Piper AS, Yeats JC, Bevan S, Docherty RJ (1999) A study of the voltage dependence of capsaicin-activated membrane currents in rat sensory neurones before and after acute desensitization. J Physiol 518: 721–733PubMedCrossRefGoogle Scholar
  35. 35.
    Liu L, Simon SA (1996) Capsaicin-induced currents with distinct desensitization and Ca2+ dependence in rat trigeminal ganglion cells. J Neurophysiol 75: 1503–1514PubMedGoogle Scholar
  36. 36.
    Koplas PA, Rosenberg RL, Oxford GS (1997) The role of calcium in the desensitization of capsaicin responses in rat dorsal root ganglion neurons. J Neurosci 17: 3525–3537PubMedGoogle Scholar
  37. 37.
    Docherty RJ, Yeats JC, Bevan S, Boddeke HW (1996) Inhibition of calcineurin inhibits the desensitization of capsaicin-evoked currents in cultured dorsal root ganglion neurones from adult rats. Pflugers Arch 431: 828–837PubMedCrossRefGoogle Scholar
  38. 38.
    Bernstein JE (1987) Capsaicin in the treatment of dermatologic disease. Cutis 39: 352–353PubMedGoogle Scholar
  39. 39.
    Maggi CA (1991) Capsaicin and primary afferent neurons: from basic science to human therapy? J Auton Nerv Syst 33: 1–14PubMedCrossRefGoogle Scholar
  40. 40.
    Bhave G., Zhu W, Wang H, Brasier DJ, Oxford GS, Gereau RWT (2002) cAMP-dependent protein kinase regulates desensitization of the capsaicin receptor (VR1) by direct phosphorylation. Neuron 35: 721–731PubMedCrossRefGoogle Scholar
  41. 41.
    Mohapatra DP, Nau C (2003) Desensitization of capsaicin-activated currents in the vanilloid receptor TRPV1 is decreased by the cyclic AMP-dependent protein kinase pathway. J Biol Chem 278: 50080–50090PubMedCrossRefGoogle Scholar
  42. 42.
    Numazaki M, Tominaga T, Takeuchi K, Murayama N, Toyooka H, Tominaga M (2003) Structural determinant of TRPV1 desensitization interacts with calmodulin. Proc Natl Acad Sci USA 100: 8002–8006PubMedCrossRefGoogle Scholar
  43. 43.
    Garcia-Martinez C, Morenilla-Palao C, Planells-Cases R, Merino JM, Ferrer-Montiel A (2000) Identification of an aspartic residue in the P-loop of the vanilloid receptor that modulates pore properties. J Biol Chem 275: 32552–32558PubMedCrossRefGoogle Scholar
  44. 44.
    Mohapatra DP, Wang SY, Wang GK, Nau C (2003) A tyrosine residue in TM6 of the vanilloid receptor TRPV1 involved in desensitization and calcium permeability of capsaicin-activated currents. Mol Cell Neurosci 23: 314–324PubMedCrossRefGoogle Scholar
  45. 45.
    De Petrocellis L, Harrison S, Bisogno T, Tognetto M, Brandi I, Smith GD, Creminon C, Davis JB, Geppetti P, Di Marzo V (2001) The vanilloid receptor (VR1)-mediated effects of anandamide are potently enhanced by the cAMP-dependent protein kinase. J Neurochem 77: 1660–1663PubMedGoogle Scholar
  46. 46.
    Hu HJ, Bhave G, Gereau RWT (2002) Prostaglandin and protein kinase A-dependent modulation of vanilloid receptor function by metabotropic glutamate receptor 5: potential mechanism for thermal hyperalgesia. J Neurosci 22: 7444–7452PubMedGoogle Scholar
  47. 47.
    Rathee PK, Distler C, Obreja O, Neuhuber W, Wang GK, Wang SY, Nau C, Kress M (2002) PKA/AKAP/VR-1 module: a common link of Gs-mediated signaling to thermal hyperalgesia. J Neurosci 22: 4740–4745PubMedGoogle Scholar
  48. 48.
    Premkumar LS, Ahern GP (2000) Induction of vanilloid receptor channel activity by protein kinase C. Nature 408: 985–990PubMedCrossRefGoogle Scholar
  49. 49.
    Bhave G, Hu HJ, Glauner KS, Zhu W, Wang H, Brasier DJ, Oxford GS, Gereau RWT (2003) Protein kinase C phosphorylation sensitizes but does not activate the capsaicin receptor transient receptor potential vanilloid 1 (TRPV1). Proc Natl Acad Sci USA 100: 12480–12485PubMedCrossRefGoogle Scholar
  50. 50.
    Sugiura T, Tominaga M, Katsuya H, Mizumura K (2002) Bradykinin lowers the threshold temperature for heat activation of vanilloid receptor 1. J Neurophysiol 88: 544–548PubMedGoogle Scholar
  51. 51.
    Dai Y, Moriyama T, Higashi T, Togashi K, Kobayashi K, Yamanaka H, Tominaga, M, Noguchi K (2004) Proteinase-activated receptor 2-mediated potentiation of transient receptor potential vanilloid subfamily 1 activity reveals a mechanism for proteinase-induced inflammatory pain. J Neurosci 24: 4293–4299PubMedCrossRefGoogle Scholar
  52. 52.
    Jung J, Shin JS, Lee SY, Hwang SW, Koo J, Cho H, Oh U (2004) Phosphorylation of vanilloid receptor 1 by Ca2+/calmodulin-dependent kinase II regulates its vanilloid binding. J Biol Chem 279: 7048–7054PubMedGoogle Scholar
  53. 53.
    Jin X, Morsy N, Winston J, Pasricha PJ, Garrett K, Akbarali HI (2004) Modulation of TRPV1 by nonreceptor tyrosine kinase, c-Src kinase. Am J Physiol Cell Physiol 287: C558–C563PubMedCrossRefGoogle Scholar
  54. 54.
    Moriyama T, Iida T, Kobayashi K, Higashi T, Fukuoka T, Tsumura H, Leon C, Suzuki N, Inoue K, Gachet C et al (2003) Possible involvement of P2Y2 metabotropic receptors in ATP-induced transient receptor potential vanilloid receptor 1-mediated thermal hypersensitivity. J Neurosci 23: 6058–6062PubMedGoogle Scholar
  55. 55.
    Premkumar LS, Qi ZH, Van Buren J, Raisinghani M (2004) Enhancement of potency and efficacy of NADA by PKC-mediated phosphorylation of vanilloid receptor. J Neurophysiol 91: 1442–1449PubMedGoogle Scholar
  56. 56.
    Ahern GP (2003) Activation of TRPV1 by the satiety factor oleoylethanolamide. J Biol Chem 278: 30429–30434PubMedCrossRefGoogle Scholar
  57. 57.
    Mandadi S, Numazaki M, Tominaga M, Bhat MB, Armati PJ, Roufogalis BD (2004) Activation of protein kinase C reverses capsaicin-induced calcium-dependent desensitization of TRPV1 ion channels. Cell Calcium 35: 471–478PubMedCrossRefGoogle Scholar
  58. 58.
    Runnels LW, Yue L, Clapham DE (2002) The TRPM7 channel is inactivated by PIP(2) hydrolysis. Nat Cell Biol 4: 329–336PubMedGoogle Scholar
  59. 59.
    Huang CL, Feng S, Hilgemann DW (1998) Direct activation of inward rectifier potassium channels by PIP2 and its stabilization by Gbetagamma. Nature 391: 803–806PubMedGoogle Scholar
  60. 60.
    Chuang HH, Prescott ED, Kong H, Shields S, Jordt SE, Basbaum AI, Chao MV, Julius D (2001) Bradykinin and nerve growth factor release the capsaicin receptor from PtdIns(4,5)P2-mediated inhibition. Nature 411: 957–962PubMedCrossRefGoogle Scholar
  61. 61.
    Prescott ED, Julius D (2003) A modular PIP2 binding site as a determinant of capsaicin receptor sensitivity. Science 300: 1284–1288PubMedCrossRefGoogle Scholar
  62. 62.
    Vyklicky L, Lyfenko A, Susankova K, Teisinger J, Vlachova V (2002) Reducing agent dithiothreitol facilitates activity of the capsaicin receptor VR-1. Neuroscience 111: 435–441PubMedGoogle Scholar

Copyright information

© Birkhäuser Verlag Basel/Switzerland 2005

Authors and Affiliations

  • Makoto Tominaga
    • 1
  1. 1.Section of Cell Signaling, Okazaki Institute for Integrative BioscienceNational Institutes of Natural SciencesOkazakiJapan

Personalised recommendations