Skip to main content

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Szolcsanyi J (1977) A pharmacological approach to elucidation of the role of different nerve fibres and receptor endings in mediation of pain. J Physiol (Paris) 73: 251–259

    CAS  Google Scholar 

  2. Carpenter SE, Lynn B (1981) Vascular and sensory responses of human skin to mild injury after topical treatment with capsaicin. Br J Pharmacol 73: 755–758

    PubMed  CAS  Google Scholar 

  3. Simone DA, Ngeow JY, Putterman GJ, Lamotte RH (1987) Hyperalgesia to heat after intradermal injection of capsaicin. Brain Res 418: 201–203

    Article  PubMed  CAS  Google Scholar 

  4. Simone DA, Baumann TK, Collins JG, Lamotte RH (1989) Sensitization of cat dorsal horn neurons to innocuous mechanical stimulation after intradermal injection of capsaicin. Brain Res 486: 185–189

    Article  PubMed  CAS  Google Scholar 

  5. Gilchrist HD, Allard BL, Simone DA (1996) Enhanced withdrawal responses to heat and mechanical stimuli following intraplantar injection of capsaicin in rats. Pain 67: 179–188

    Article  PubMed  CAS  Google Scholar 

  6. Hautkappe M, Roizen MF, Toledano A, Roth S, Jeffries JA, Ostermeier AM (1998) Review of the effectiveness of capsaicin for painful cutaneous disorders and neural dysfunction. Clin J Pain 14: 97–106

    Article  PubMed  CAS  Google Scholar 

  7. Zhang WY, Li Wan PA (1994) The effectiveness of topically applied capsaicin. A metaanalysis. Eur J Clin Pharmacol 46: 517–522

    Article  PubMed  CAS  Google Scholar 

  8. Dray A (1999) Vanilloids as analgesics. In: J Sawynok, A Cowan (eds): Novel aspects of pain management: opioids and beyond. Wiley-Liss, New York, 117–134

    Google Scholar 

  9. Liu L, Lo Y, Chen I, Simon SA (1997) The responses of rat trigeminal ganglion neurons to capsaicin and two nonpungent vanilloid receptor agonists, olvanil and glyceryl nonamide. J Neurosci 17: 4101–4111

    PubMed  CAS  Google Scholar 

  10. Liu L, Szallasi A, Simon SA (1998) A non-pungent resiniferatoxin analogue, phorbol 12-phenylacetate 13 acetate 20-homovanillate, reveals vanilloid receptor subtypes on rat trigeminal ganglion neurons. Neuroscience 84: 569–581

    Article  PubMed  CAS  Google Scholar 

  11. Szallasi A, Biro T, Szabo T, Modarres S, Petersen M, Klusch A, Blumberg PM, Krause JE, Sterner O (1999) A non-pungent triprenyl phenol of fungal origin, scutigeral, stimulates rat dorsal root ganglion neurons via interaction at vanilloid receptors. Br J Pharmacol 126: 1351–1358

    Article  PubMed  CAS  Google Scholar 

  12. Iida T, Moriyama T, Kobata K, Morita A, Murayama N, Hashizume S, Fushiki T, Yazawa S, Watanabe T, Tominaga M (2003) TRPV1 activation and induction of nociceptive response by a non-pungent capsaicin-like compound, capsiate. Neuropharmacology 44: 958–967

    Article  PubMed  CAS  Google Scholar 

  13. Urban L, Campbell EA, Panesar M, Patel S, Chaudhry N, Kane S, Buchheit K, Sandells B, James IF (2000) In vivo pharmacology of SDZ 249–665, a novel, non-pungent capsaicin analogue. Pain 89: 65–74

    Article  PubMed  CAS  Google Scholar 

  14. Caterina MJ, Leffler A, Malmberg AB, Martin WJ, Trafton J, Petersen-Zeitz KR, Koltzenburg M, Basbaum AI, Julius D (2000) Impaired nociception and pain sensation in mice lacking the capsaicin receptor. Science 288: 306–313

    Article  PubMed  CAS  Google Scholar 

  15. Davis JB, Gray J, Gunthorpe MJ, Hatcher JP, Davey PT, Overend P, Harries MH, Latcham J, Clapham C, Atkinson K et al. (2000) Vanilloid receptor-1 is essential for inflammatory thermal hyperalgesia. Nature 405: 183–187

    Article  PubMed  CAS  Google Scholar 

  16. Dray A, Forbes CA, Burgess GM (1990) Ruthenium red blocks the capsaicin-induced increase in intracellular calcium and activation of membrane currents in sensory neurones as well as the activation of peripheral nociceptors in vitro. Neurosci Lett 110: 52–59

    Article  PubMed  CAS  Google Scholar 

  17. Wood JN, Winter J, James IF, Rang HP, Yeats J, Bevan S (1988) Capsaicin-induced ion fluxes in dorsal root ganglion cells in culture. J Neurosci 8: 3208–3220

    PubMed  CAS  Google Scholar 

  18. Maggi CA, Santicioli P, Geppetti P, Parlani M, Astolfi M, Pradelles P, Patacchini R, Meli A (1988) The antagonism induced by ruthenium red of the actions of capsaicin on the peripheral terminals of sensory neurons: further studies. Eur J Pharmacol 154: 1–10

    Article  PubMed  CAS  Google Scholar 

  19. Maggi CA, Patacchini R, Santicioli P, Giuliani S, Geppetti P, Meli A (1988) Protective action of ruthenium red toward capsaicin desensitization of sensory fibers. Neurosci Lett 88: 201–205

    Article  PubMed  CAS  Google Scholar 

  20. Amann R, Donnerer J, Lembeck F (1990) Activation of primary afferent neurons by thermal stimulation. Influence of ruthenium red. Naunyn-Schmiedeberg’s Arch Pharmacol 341: 108–113

    CAS  Google Scholar 

  21. Szallasi A, Blumberg PM (1990) Specific binding of resiniferatoxin, an ultrapotent capsaicin analog, by dorsal root ganglion membranes. Brain Res 524: 106–111

    Article  PubMed  CAS  Google Scholar 

  22. Caterina MJ, Schumacher MA, Tominaga M, Rosen TA, Levine JD, Julius D (1997) The capsaicin receptor: a heat-activated ion channel in the pain pathway. Nature 389: 816–824

    PubMed  CAS  Google Scholar 

  23. McIntyre P, McLatchie LM, Chambers A, Phillips E, Clarke M, Savidge J, Toms C, Peacock M, Shah K, Winter J et al. (2001) Pharmacological differences between the human and rat vanilloid receptor 1 (VR1). Br J Pharmacol 132: 1084–1094

    Article  PubMed  CAS  Google Scholar 

  24. Ohkubo T, Shibata M, Takahashi H (1993) The analgesia induced by intrathecal injection of ruthenium red. Pain 54: 219–221

    Article  PubMed  CAS  Google Scholar 

  25. Santos AR, Calixto JB (1997) Ruthenium red and capsazepine antinociceptive effect in formalin and capsaicin models of pain in mice. Neurosci Lett 235: 73–76

    Article  PubMed  CAS  Google Scholar 

  26. Szallasi A (2001) Vanilloid receptor ligands: hopes and realities for the future. Drugs Aging 18: 561–573

    PubMed  CAS  Google Scholar 

  27. Smith GD, Gunthorpe MJ, Kelsell RE, Hayes PD, Reilly P, Facer P, Wright JE, Jerman JC, Walhin JP, Ooi L et al. (2002) TRPV3 is a temperature-sensitive vanilloid receptorlike protein. Nature 418: 186–190

    PubMed  CAS  Google Scholar 

  28. Maggi CA (1991) Capsaicin and primary afferent neurons: from basic science to human therapy? J Auton Nerv Syst 33: 1–14

    Article  PubMed  CAS  Google Scholar 

  29. Bevan S, Hothi S, Hughes G, James IF, Rang HP, Shah K, Walpole CS, Yeats JC (1992) Capsazepine: a competitive antagonist of the sensory neurone excitant capsaicin. Br J Pharmacol 107: 544–552

    PubMed  CAS  Google Scholar 

  30. Walpole CS, Bevan S, Bovermann G, Boelsterli JJ, Breckenridge R, Davies JW, Hughes GA, James I, Oberer L, Winter J (1994) The discovery of capsazepine, the first competitive antagonist of the sensory neuron excitants capsaicin and resiniferatoxin. J Med Chem 37: 1942–1954

    Article  PubMed  CAS  Google Scholar 

  31. Bevan S, Rang H, Shah K (1991) Development of a competitive antagonist for the sensory neurone excitant, capsaicin. Br J Pharmacol 102: 77P

    Google Scholar 

  32. Cholewinski A, Burgess GM, Bevan S (1993) The role of calcium in capsaicin-induced desensitization in rat cultured dorsal root ganglion neurons. Neuroscience 55: 1015–1023

    Article  PubMed  CAS  Google Scholar 

  33. Maggi CA, Bevan S, Walpole CS, Rang HP, Giuliani S (1993) A comparison of capsazepine and ruthenium red as capsaicin antagonists in the rat isolated urinary bladder and vas deferens. Br J Pharmacol 108: 801–805

    PubMed  CAS  Google Scholar 

  34. Santicioli P, Del Bianco E, Figini M, Bevan S, Maggi CA (1993) Effect of capsazepine on the release of calcitonin gene-related peptide-like immunoreactivity (CGRP-LI) induced by low pH, capsaicin and potassium in rat soleus muscle. Br J Pharmacol 110: 609–612

    PubMed  CAS  Google Scholar 

  35. Urban L, Dray A (1991) Capsazepine, a novel capsaicin antagonist, selectively antagonises the effects of capsaicin in the mouse spinal cord in vitro. Neurosci Lett 134: 9–11

    Article  PubMed  CAS  Google Scholar 

  36. Ellis JL, Undem BJ (1994) Inhibition by capsazepine of resiniferatoxin-and capsaicininduced contractions of guinea pig trachea. J Pharmacol Exp Ther 268: 85–89

    PubMed  CAS  Google Scholar 

  37. Fox AJ, Urban L, Barnes PJ, Dray A (1995) Effects of capsazepine against capsaicin-and proton-evoked excitation of single airway C-fibres and vagus nerve from the guinea-pig. Neuroscience 67: 741–752

    Article  PubMed  CAS  Google Scholar 

  38. Auberson S, Lacroix JS, Lundberg JM (2000) Modulation of capsaicin-sensitive nerve activation by low pH solutions in guinea-pig lung. Pharmacol Toxicol 86: 16–23

    PubMed  CAS  Google Scholar 

  39. Lou YP, Lundberg JM (1992) Inhibition of low pH evoked activation of airway sensory nerves by capsazepine, a novel capsaicin-receptor antagonist. Biochem Biophys Res Commun 189: 537–544

    Article  PubMed  CAS  Google Scholar 

  40. Satoh H, Lou YP, Lundberg JM (1993) Inhibitory effects of capsazepine and SR 48968 on citric acid-induced bronchoconstriction in guinea-pigs. Eur J Pharmacol 236: 367–372

    Article  PubMed  CAS  Google Scholar 

  41. Savidge J, Davis C, Shah K, Colley S, Phillips E, Ranasinghe S, Winter J, Kotsonis P, Rang H, McIntyre P (2002) Cloning and functional characterization of the guinea pig vanilloid receptor 1. Neuropharmacology 43: 450–456

    Article  PubMed  CAS  Google Scholar 

  42. Vyklicky L, Knotkova-Urbancova H, Vitaskova Z, Vlachova V, Kress M, Reeh PW (1998) Inflammatory mediators at acidic pH activate capsaicin receptors in cultured sensory neurons from newborn rats. J Neurophysiol 79: 670–676

    PubMed  CAS  Google Scholar 

  43. Habelt C, Kessler F, Distler C, Kress M, Reeh PW (2000) Interactions of inflammatory mediators and low pH not influenced by capsazepine in rat cutaneous nociceptors. Neuroreport 11: 973–976

    PubMed  CAS  Google Scholar 

  44. Valenzano KJ, Grant ER, Wu G, Hachicha M, Schmid L, Tafesse L, Sun Q, Rotshteyn Y, Francis J, Limberis JT et al. (2003) BCTC (N-(4-tertiarybutylphenyl)-4-(3-chloropyridin-2-yl) tetrahydropyrazine-1(2H)-carbox-amide), a novel, orally-effective vanilloid receptor 1 antagonist with analgesic properties: I. In vitro characterization and pharmacokinetic properties. J Pharmacol Exp Ther 306: 377–386

    Article  PubMed  CAS  Google Scholar 

  45. Liu L, Simon SA (1997) Capsazepine, a vanilloid receptor antagonist, inhibits nicotinic acetylcholine receptors in rat trigeminal ganglia. Neurosci Lett 228: 29–32

    Article  PubMed  CAS  Google Scholar 

  46. Docherty RJ, Yeats JC, Piper AS (1997) Capsazepine block of voltage-activated calcium channels in adult rat dorsal root ganglion neurones in culture. Br J Pharmacol 121: 1461–1467

    PubMed  CAS  Google Scholar 

  47. Gill CH, Strijbos PJ, Bates SA, Cairns OD, Davies CH (2001) Capsazepine inhibits a recombinant human HCN1-mediated current. Br J Pharmacol 135: 251P

    Google Scholar 

  48. Walker KM, Urban L, Medhurst SJ, Patel S, Panesar M, Fox AJ, McIntyre P (2003) The VR1 antagonist capsazepine reverses mechanical hyperalgesia in models of inflammatory and neuropathic pain. J Pharmacol Exp Ther 304: 56–62

    Article  PubMed  CAS  Google Scholar 

  49. Caterina MJ, Rosen TA, Tominaga M, Brake AJ, Julius D (1999) A capsaicin-receptor homologue with a high threshold for noxious heat. Nature 398: 436–441

    PubMed  CAS  Google Scholar 

  50. Peier AM, Reeve AJ, Andersson DA, Moqrich A, Earley TJ, Hergarden AC, Story GM, Colley S, Hogenesch JB, McIntyre P et al (2002) A heat-sensitive TRP channel expressed in keratinocytes. Science 296: 2046–2049

    Article  PubMed  CAS  Google Scholar 

  51. Davis AJ, Perkins MN (1996) Substance P and capsaicin-induced mechanical hyperalgesia in the rat knee joint; the involvement of bradykinin B1 and B2 receptors. Br J Pharmacol 118: 2206–2212

    PubMed  CAS  Google Scholar 

  52. Kwak JY, Jung JY, Hwang SW, Lee WT, Oh U (1998) A capsaicin-receptor antagonist, capsazepine, reduces inflammation-induced hyperalgesic responses in the rat: evidence for an endogenous capsaicin-like substance. Neuroscience 86: 619–626

    Article  PubMed  CAS  Google Scholar 

  53. Sakurada T, Matsumura T, Moriyama T, Sakurada C, Ueno S, Sakurada S (2003) Differential effects of intraplantar capsazepine and ruthenium red on capsaicin-induced desensitization in mice. Pharmacol Biochem Behav 75: 115–121

    Article  PubMed  CAS  Google Scholar 

  54. Planells-Cases R, Aracil A, Merino JM, Gallar J, Perez-Paya E, Belmonte C, Gonzalez-Ros JM, Ferrer-Montiel AV (2000) Arginine-rich peptides are blockers of VR-1 channels with analgesic activity. FEBS Lett 481: 131–136

    Article  PubMed  CAS  Google Scholar 

  55. Himmel HM, Kiss T, Borvendeg SJ, Gillen C, Illes P (2002) The arginine-rich hexapeptide R4W2 is a stereoselective antagonist at the vanilloid receptor 1: a Ca2+ imaging study in adult rat dorsal root ganglion neurons. J Pharmacol Exp Ther 301: 981–986

    Article  PubMed  CAS  Google Scholar 

  56. Garcia-Martinez C, Humet M, Planells-Cases R, Gomis A, Caprini M, Viana F, De La PE, Sanchez-Baeza F, Carbonell T, De Felipe C et al. (2002) Attenuation of thermal nociception and hyperalgesia by VR1 blockers. Proc Natl Acad Sci USA 99: 2374–2379

    Article  PubMed  CAS  Google Scholar 

  57. Wahl P, Foged C, Tullin S, Thomsen C (2001) Iodo-resiniferatoxin, a new potent vanilloid receptor antagonist. Mol Pharmacol 59: 9–15

    PubMed  CAS  Google Scholar 

  58. Seabrook GR, Sutton KG, Jarolimek W, Hollingworth GJ, Teague S, Webb J, Clark N, Boyce S, Kerby J, Ali Z et al. (2002) Functional properties of the high-affinity TRPV1 (VR1) vanilloid receptor antagonist (4-hydroxy-5-iodo-3-methoxyphenylacetate ester) iodo-resiniferatoxin. J Pharmacol Exp Ther 303: 1052–1060

    Article  PubMed  CAS  Google Scholar 

  59. Rigoni M, Trevisani M, Gazzieri D, Nadaletto R, Tognetto M, Creminon C, Davis JB, Campi B, Amadesi S, Geppetti P, Harrison S (2003) Neurogenic responses mediated by vanilloid receptor-1 (TRPV1) are blocked by the high affinity antagonist, iodo-resiniferatoxin. Br J Pharmacol 138: 977–985

    Article  PubMed  CAS  Google Scholar 

  60. Appendino G, Harrison S, De Petrocellis L, Daddario N, Bianchi F, Schiano MA, Trevisani M, Benvenuti F, Geppetti P, Di Marzo V (2003) Halogenation of a capsaicin analogue leads to novel vanilloid TRPV1 receptor antagonists. Br J Pharmacol 139: 1417–1424

    Article  PubMed  CAS  Google Scholar 

  61. Wang Y, Szabo T, Welter JD, Toth A, Tran R, Lee J, Kang SU, Suh YG, Blumberg PM, Lee J (2002) High affinity antagonists of the vanilloid receptor. Mol Pharmacol 62: 947–956

    Article  PubMed  CAS  Google Scholar 

  62. Park HG, Park MK, Choi JY, Choi SH, Lee J, Park BS, Kim MG, Suh YG, Cho H, Oh U et al. (2003) Synthesis of N,N′,N″-trisubstituted thiourea derivatives and their antagonist effect on the vanilloid receptor. Bioorg Med Chem Lett 13: 601–604

    PubMed  CAS  Google Scholar 

  63. Suh YG, Lee YS, Min KH, Park OH, Seung HS, Kim HD, Park HG, Choi J, Lee J, Kang SW et al (2003) Novel non-vanilloid VR1 antagonist of high analgesic effects and its structural requirement for VR1 antagonistic effects. Bioorg Med Chem Lett 13: 4389–4393

    Article  PubMed  CAS  Google Scholar 

  64. Lee J, Lee J, Kang M, Shin M, Kim JM, Kang SU, Lim JO, Choi HK, Suh YG, Park HG et al (2003) N-(3-acyloxy-2-benzylpropyl)-N′-[4-(methylsulfonylamino)benzyl]thiourea analogues: novel potent and high affinity antagonists and partial antagonists of the vanilloid receptor. J Med Chem 46: 3116–3126

    PubMed  CAS  Google Scholar 

  65. Hutchinson A, Desimone RW, Hodgetts KJ, Krause JE, White GG (2002) International Publication Number WO02/08221, World Intellectual Property Organization

    Google Scholar 

  66. Swanson DM, Dubin AE, Shah C, Nasser N, Chang L, Dax SL, Jetter M, Breitenbucher JG, Liu C, Mazur C et al (2005) Identification and biological evaluation of 4-(3-trifluoromethylpyridin-2-yl)piperazine-1-carboxylic acid (5-trifluoromethylpyridin-2-yl) amide, a high affinity TRPV1 (VR1) vanilloid receptor antagonist. J Med Chem 48: 1857–1872

    Article  PubMed  CAS  Google Scholar 

  67. Sun Q, Tafesse L, Islam K, Zhou X, Victory SF, Zhang C, Hachicha M, Schmid LA, Patel A, Rotshteyn Y et al. (2003) 4-(2-pyridyl)piperazine-1-carboxamides: potent vanilloid receptor 1 antagonists. Bioorg Med Chem Lett 13: 3611–3616

    PubMed  CAS  Google Scholar 

  68. Pomonis JD, Harrison JE, Mark L, Bristol DR, Valenzano KJ, Walker K (2003) BCTC (N-(4-tertiarybutylphenyl)-4-(3-cholorphyridin-2-yl) tetrahydropryazine-1(2H)-carboxamide), a novel, orally-effective vanilloid receptor 1 antagonist with analgesic properties: II. In vivo characterization in rat models of inflammatory and neuropathic pain. J Pharmacol Exp Ther 306: 387–393

    Article  PubMed  CAS  Google Scholar 

  69. Gunthorpe MJ, Rami HK, Jerman JC, Smart D, Gill CH, Soffin EM, Luis HS, Lappin SC, Egerton J, Smith GD et al (2004) Identification and characterisation of SB-366791, a potent and selective vanilloid receptor (VR1/TRPV1) antagonist. Neuropharmacology 46: 133–149

    PubMed  CAS  Google Scholar 

  70. Culshaw AJ, Gull P, Hallett A, Kim H-Y, Seiler MP, Zimmermann K, Liu Y, Prashad M (2002) International Publication Number WO02/076946, World Intellectual Property Organization

    Google Scholar 

  71. Meyer RA, Davis KD, Cohen RH, Treede RD, Campbell JN (1991) Mechanically insensitive afferents (MIAs) in cutaneous nerves of monkey. Brain Res 561: 252–261

    Article  PubMed  CAS  Google Scholar 

  72. Handwerker HO, Kilo S, Reeh PW (1991) Unresponsive afferent nerve fibres in the sural nerve of the rat. J Physiol 435: 229–242

    PubMed  CAS  Google Scholar 

  73. Kress M, Koltzenburg M, Reeh PW, Handwerker HO (1992) Responsiveness and functional attributes of electrically localized terminals of cutaneous C-fibers in vivo and in vitro. J Neurophysiol 68: 581–595

    PubMed  CAS  Google Scholar 

  74. Amaya F, Oh-hashi K, Naruse Y, Iijima N, Ueda M, Shimosato G, Tominaga M, Tanaka Y, Tanaka M (2003) Local inflammation increases vanilloid receptor 1 expression within distinct subgroups of DRG neurons. Brain Res 963: 190–196

    Article  PubMed  CAS  Google Scholar 

  75. Simone DA, Baumann TK, Lamotte RH (1989) Dose-dependent pain and mechanical hyperalgesia in humans after intradermal injection of capsaicin. Pain 38: 99–107

    Article  PubMed  CAS  Google Scholar 

  76. Lamotte RH, Shain CN, Simone DA, Tsai EF (1991) Neurogenic hyperalgesia: psychophysical studies of underlying mechanisms. J Neurophysiol 66: 190–211

    PubMed  CAS  Google Scholar 

  77. Simone DA, Sorkin LS, Oh U, Chung JM, Owens C, Lamotte RH, Willis WD (1991) Neurogenic hyperalgesia: central neural correlates in responses of spinothalamic tract neurons. J Neurophysiol 66: 228–246

    PubMed  CAS  Google Scholar 

  78. Guo A, Vulchanova L, Wang J, Li X, Elde R (1999) Immunocytochemical localization of the vanilloid receptor 1 (VR1): relationship to neuropeptides, the P2X3 purinoceptor and IB4 binding sites. Eur J Neurosci 11: 946–958

    Article  PubMed  CAS  Google Scholar 

  79. Hudson LJ, Bevan S, Wotherspoon G, Gentry C, Fox A, Winter J (2001) VR1 protein expression increases in undamaged DRG neurons after partial nerve injury. Eur J Neurosci 13: 2105–2114

    Article  PubMed  CAS  Google Scholar 

  80. Fukuoka T, Tokunaga A, Tachibana T, Dai Y, Yamanaka H, Noguchi K (2002) VR1, but not P2X(3), increases in the spared L4 DRG in rats with L5 spinal nerve ligation. Pain 99: 111–120

    Article  PubMed  CAS  Google Scholar 

  81. Rashid MH, Inoue M, Bakoshi S, Ueda H (2003) Increased expression of vanilloid receptor 1 (VR1) on myelinated primary afferent neurons contributes to the antihyperalgesic effect of capsaicin cream in diabetic neuropathic pain in mice. J Pharmacol Exp Ther 304: 940–948

    PubMed  CAS  Google Scholar 

  82. Jacobus WE, Taylor GJ, Hollis DP, Nunnally RL (1977) Phosphorus nuclear magnetic resonance of perfused working rat hearts. Nature 265: 756–758

    Article  PubMed  CAS  Google Scholar 

  83. Tracey DJ, Walker JS (1995) Pain due to nerve damage: are inflammatory mediators involved? Inflamm Res 44: 407–411

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Birkhäuser Verlag Basel/Switzerland

About this chapter

Cite this chapter

Valenzano, K.J., Pomonis, J.D., Walker, K. (2005). TRPV1 antagonists and chronic pain. In: Malmberg, A.B., Bley, K.R. (eds) Turning up the Heat on Pain: TRPV1 Receptors in Pain and Inflammation. Progress in Inflammation Research. Birkhäuser Basel. https://doi.org/10.1007/3-7643-7379-2_12

Download citation

  • DOI: https://doi.org/10.1007/3-7643-7379-2_12

  • Publisher Name: Birkhäuser Basel

  • Print ISBN: 978-3-7643-7080-0

  • Online ISBN: 978-3-7643-7379-5

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics