Skip to main content

Part of the book series: Experientia Supplementum ((EXS,volume 96))

Abstract

Oncogenes encoded by human tumor viruses play integral roles in the viral conquest of the host cell by subverting crucial and relatively non-redundant regulatory circuits that regulate cellular proliferation, differentiation, apoptosis and life span. Human tumor virus oncoproteins can also disrupt pathways that are necessary for the maintenance of the integrity of host cellular genome. Some viral oncoproteins act as powerful mutator genes and their expression dramatically increases the incidence of host cell mutations with every round of cell division. Others subvert cellular safeguard mechanisms intended to eliminate cells that have acquired abnormalities that interfere with normal cell division. Viruses that encode such activities can contribute to initiation as well as progression of human cancers.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Weinberg RA (1997) The cat and mouse games that genes, viruses, and cells play. Cell 88: 573–575

    Article  CAS  PubMed  Google Scholar 

  2. zur Hausen H (2001) Proliferation-inducing viruses in non-permissive systems as possible causes of human cancers. Lancet 357: 381–384

    PubMed  Google Scholar 

  3. zur Hausen H (2001) Oncogenic DNA viruses. Oncogene 20: 7820–7823

    PubMed  Google Scholar 

  4. Nevins JR (2001) Cell Transformation by Viruses. In: DM Knipe, PM Howley (eds): Fields Virology. Lippincott-Williams and Wikins, Philadelphia, 245–283

    Google Scholar 

  5. Parada LF, Tabin CJ, Shih C, Weinberg RA (1982) Human EJ bladder carcinoma oncogene is homologue of Harvey sarcoma virus ras gene. Nature 297: 474–478

    Article  CAS  PubMed  Google Scholar 

  6. Howley PM, Lowy DR (2001) Papillomaviruses and their replication. In: DM Knipe, PM Howley (eds): Fields Virology. Lippincott Williams and Wilkins, Philadelphia, 2197–2229

    Google Scholar 

  7. de Villiers EM, Fauquet C, Broker TR, Bernard HU, zur Hausen H (2004) Classification of papillomaviruses. Virology 324: 17–27

    PubMed  Google Scholar 

  8. zur Hyausen H (2002) Papillomaviruses and cancer: from basic studies to clinical application. Nat Rev Cancer 2: 342–350

    Google Scholar 

  9. Gillison ML, Koch WM, Capone RB, Spafford M, Westra WH, Wu L, Zahurak ML, Daniel RW, Viglione M, Symer DE et al. (2000) Evidence for a causal association between human papillomavirus and a subset of head and neck cancers. J Natl Cancer Inst 92: 709–720

    Article  CAS  PubMed  Google Scholar 

  10. Crum CP, McLachlin CM, Tate JE, Mutter GL (1997) Pathobiology of vulvar squamous neoplasia. Curr Opin Obstet Gynecol 9: 63–69

    CAS  PubMed  Google Scholar 

  11. Klencke BJ, Palefsky JM (2003) Anal cancer: an HIV-associated cancer. Hematol Oncol Clin North Am 17: 859–872

    Article  PubMed  Google Scholar 

  12. Koutsky LA, Ault KA, Wheeler CM, Brown DR, Barr E, Alvarez FB, Chiacchierini LM, Jansen KU (2002) A controlled trial of a human papillomavirus type 16 vaccine. N Engl J Med 347: 1645–1651

    Article  CAS  PubMed  Google Scholar 

  13. Frazer IH (2004) Prevention of cervical cancer through papillomavirus vaccination. Nat Rev Immunol 4: 46–54

    Article  CAS  PubMed  Google Scholar 

  14. Dyson N, Howley PM, Münger K, Harlow E (1989) The human papillomavirus-16 E7 oncoprotein is able to bind to the retinoblastoma gene product. Science 243: 934–937

    CAS  PubMed  Google Scholar 

  15. Werness BA, Levine AJ, Howley PM (1990) Association of human papillomavirus types 16 and 18 E6 proteins with p53. Science 248: 76–79

    CAS  PubMed  Google Scholar 

  16. Klingelhutz AJ, Foster SA, McDougall JK (1996) Telomerase activation by the E6 gene product of human papillomavirus type 16. Nature 380: 79–82

    Article  CAS  PubMed  Google Scholar 

  17. Winer RL, Lee SK, Hughes JP, Adam DE, Kiviat NB, Koutsky LA (2003) Genital human papillomavirus infection: incidence and risk factors in a cohort of female university students. Am J Epidemiol 157: 218–226

    Article  PubMed  Google Scholar 

  18. Lowy DR, Howley PM (2001) Papillomaviruses. In: DM Knipe, PM Howley (eds): Fields Virology Lippincott Williams and Wilkins, Philadelphia, 2231–2264

    Google Scholar 

  19. Thorland EC, Myers SL, Gostout BS, Smith DI (2003) Common fragile sites are preferential targets for HPV16 integrations in cervical tumors. Oncogene 22: 1225–1237

    Article  CAS  PubMed  Google Scholar 

  20. Wentzensen N, Vinokurova S, von Knebel Doeberitz M (2004) Systematic review of genomic integration sites of human papillomavirus genomes in epithelial dysplasia and invasive cancer of the female lower genital tract. Cancer Res 64: 3878–3884

    Article  CAS  PubMed  Google Scholar 

  21. Jeon S, Allen-Hoffmann BL, Lambert PF (1995) Integration of human papillomavirus type 16 into the human genome correlates with a selective growth advantage of cells. J Virol 69: 2989–2997

    CAS  PubMed  Google Scholar 

  22. Munger K, Baldwin A, Edwards KM, Hayakawa H, Nguyen CL, Owens M, Grace M, Huh KW (2004) Mechanisms of human papillomavirus-induced oncogensis. J Virol 78: 11451–11460

    Article  PubMed  Google Scholar 

  23. Hawley-Nelson P, Vousden KH, Hubbert NL, Lowy DR, Schiller JT (1989) HPV16 E6 and E7 proteins cooperate to immortalize human foreskin keratinocytes. EMBO J 8: 3905–3910

    CAS  PubMed  Google Scholar 

  24. Münger K, Phelps WC, Bubb V, Howley PM, Schlegel R (1989) The E6 and E7 genes of the human papillomavirus type 16_together are necessary and sufficient for transformation of primary human keratinocytes. J Virol 63: 4417–4421

    PubMed  Google Scholar 

  25. McCance DJ, Kopan R, Fuchs E, Laimins LA (1988) Human papillomavirus type 16 alters human epithelial cell differentiation in vitro. Proc Natl Acad Sci USA 85: 7169–7173

    CAS  PubMed  Google Scholar 

  26. Arbeit JM, Howley PM, Hanahan D (1996) Chronic estrogen-induced cervical and vaginal squamous carcinogenesis in human papillomavirus type 16 transgenic mice. Proc Natl Acad Sci USA 93: 2930–2935

    Article  CAS  PubMed  Google Scholar 

  27. Hanahan D, Weinberg RA (2000) The hallmarks of cancer. Cell 100: 57–70

    Article  CAS  PubMed  Google Scholar 

  28. Klausner RD (2002) The fabric of cancer cell biology-Weaving together the strands. Cancer Cell 1: 3–10

    Article  CAS  PubMed  Google Scholar 

  29. Cahill DP, Kinzler KW, Vogelstein B, Lengauer C (1999) Genetic instability and darwinian selection in tumours. Trends Cell Biol 9: M57–M60

    Article  CAS  PubMed  Google Scholar 

  30. Hahn WC, Weinberg RA (2002) Rules for making human tumor cells. N Engl J Med 347: 1593–1603

    Article  CAS  PubMed  Google Scholar 

  31. Zimonjic D, Brooks MW, Popescu N, Weinberg RA, Hahn WC (2001) Derivation of human tumor cells in vitro without widespread genomic instability. Cancer Res 61: 8838–8844

    CAS  PubMed  Google Scholar 

  32. Nowak MA, Komarova NL, Sengupta A, Jallepalli PV, Shih Ie M, Vogelstein B, Lengauer C (2002) The role of chromosomal instability in tumor initiation. Proc Natl Acad Sci USA 99: 16226–16231

    Article  CAS  PubMed  Google Scholar 

  33. Kinzler KW, Vogelstein B (1997) Cancer-susceptibility genes. Gatekeepers and caretakers. Nature 386: 761, 763

    Article  CAS  PubMed  Google Scholar 

  34. Loeb LA (1991) Mutator phenotype may be required for multistage carcinogenesis. Cancer Res 51: 3075–3079

    CAS  PubMed  Google Scholar 

  35. Tomlinson IP, Novelli MR, Bodmer WF (1996) The mutation rate and cancer. Proc Natl Acad Sci USA 93: 14800–14803

    Article  CAS  PubMed  Google Scholar 

  36. Duensing S, Munger K (2003) Centrosomes, genomic instability, and cervical carcinogenesis. Crit Rev Eukaryot Gene Expr 13: 9–23

    Article  CAS  PubMed  Google Scholar 

  37. White AE, Livanos EM, Tlsty TD (1994) Differential Disruption of Genomic Integrity and Cell Cycle Regulation in Normal Human Fibroblasts by the HPV Oncoproteins. Genes and Develop 8: 666–677

    CAS  Google Scholar 

  38. Duensing S, Munger K (2004) Mechanisms of genomic instability in human cancer: insights from studies with human papillomavirus oncoproteins. Int J Cancer 109: 157–162

    Article  CAS  PubMed  Google Scholar 

  39. Southern SA, Evans MF, Herrington CS (1997) Basal cell tetrasomy in low-grade cervical squamous intraepithelial lesions infected with high-risk human papillomaviruses. Cancer Res 57: 4210–4213

    CAS  PubMed  Google Scholar 

  40. Giannoudis A, Evans MF, Southern SA, Herrington CS (2000) Basal keratinocyte tetrasomy in low-grade squamous intra-epithelial lesions of the cervix is restricted to high and intermediate risk HPV infection but is not type-specific. Br J Cancer 82: 424–428

    Article  CAS  PubMed  Google Scholar 

  41. Southern SA, Noya F, Meyers C, Broker TR, Chow LT, Herrington CS (2001) Tetrasomy is induced by human papillomavirus type 18 E7 gene expression in keratinocyte raft cultures. Cancer Res 61: 4858–4863

    CAS  PubMed  Google Scholar 

  42. Southern SA, Lewis MH, Herrington CS (2004) Induction of tetrasomy by human papillomavirus type 16 E7 protein is independent of pRb binding and disruption of differentiation. Br J Cancer 90: 1949–1954

    Article  CAS  PubMed  Google Scholar 

  43. Meraldi P, Honda R, Nigg EA (2002) Aurora-A overexpression reveals tetraploidization as a major route to centrosome amplification in p53(-/-) cells. Embo J 21: 483–492

    Article  CAS  PubMed  Google Scholar 

  44. Storchova Z, Pellman D (2004) From polyploidy to aneuploidy, genome instability and cancer. Nat Rev Mol Cell Biol 5: 45–54

    Article  CAS  PubMed  Google Scholar 

  45. Winkler B, Crum CP, Fujii T, Ferenczy A, Boon M, Braun L, Lancaster WD, Richart RM (1984) Koilocytotic lesions of the cervix. The relationship of mitotic abnormalities to the presence of papillomavirus antigens and nuclear DNA content. Cancer 53: 1081–1087

    CAS  PubMed  Google Scholar 

  46. Hinchcliffe EH, Sluder G (2001) “It Takes Two to Tango”: understanding how centrosome duplication is regulated throughout the cell cycle. Genes Dev 15: 1167–1181

    Article  CAS  PubMed  Google Scholar 

  47. Nigg EA (2002) Centrosome aberrations: cause or consequence of cancer progression? Nat Rev Cancer 2: 815–825

    Article  CAS  PubMed  Google Scholar 

  48. Bunz F, Dutriaux A, Lengauer C, Waldman T, Zhou S, Brown JP, Sedivy JM, Kinzler KW, Vogelstein B (1998) Requirement for p53 and p21 to sustain G2 arrest after DNA damage. Science 282: 1497–1501

    Article  CAS  PubMed  Google Scholar 

  49. Duensing S, Lee LY, Duensing A, Basile J, Piboonniyom S, Gonzalez S, Crum CP, Munger K (2000) The human papillomavirus type 16 E6 and E7 oncoproteins cooperate to induce mitotic defects and genomic instability by uncoupling centrosome duplication from the cell division cycle. Proc Natl Acad Sci USA 97: 10002–10007

    Article  CAS  PubMed  Google Scholar 

  50. Boveri T (1900) Zellenstudien IV. Über die Natur der Zentrosomen. G. Fischer, Jena

    Google Scholar 

  51. Boveri T (1902) Über mehrpolige Mitosen als Mittel zur Analyse des Zellkerns. Verh d phys-med Ges Würzburg NF 35: 67–90

    Google Scholar 

  52. Hansemann D (1890) Ueber asymmetrische Zelltheilung in Epithelkrebsen und deren biologische Bedeutung. Arch Pathol Anat Physiol Klin Med 119: 299–326

    Google Scholar 

  53. Boveri T (1914) Zur Frage der Entstehung Maligner Tumoren. Fischer, Jena

    Google Scholar 

  54. Skyldberg B, Fujioka K, Hellstrom AC, Sylven L, Moberger B, Auer G (2001) Human papillomavirus infection, centrosome aberration, and genetic stability in cervical lesions. Mod Pathol 14: 279–284

    Article  CAS  PubMed  Google Scholar 

  55. Duensing S, Duensing A, Flores ER, Do A, Lambert PF, Munger K (2001) Centrosome abnormalities and genomic instability by episomal expression of human papillomavirus type 16 in raft cultures of human keratinocytes. J Virol 75: 7712–7716

    Article  CAS  PubMed  Google Scholar 

  56. Duensing S, Duensing A, Crum CP, Munger K (2001) Human papillomavirus type 16 E7 oncoprotein-induced abnormal centrosome synthesis is an early event in the evolving malignant phenotype. Cancer Res 61: 2356–2360

    CAS  PubMed  Google Scholar 

  57. Brinkley BR (2001) Managing the centrosome numbers game: from chaos to stability in cancer cell division. Trends Cell Biol 11: 18–21

    Article  CAS  PubMed  Google Scholar 

  58. Schaeffer AJ, Nguyen M, Liem A, Lee D, Montagna C, Lambert PF, Ried T, Difilippantonio MJ (2004) E6 and E7 oncoproteins induce distinct patterns of chromosomal aneuploidy in skin tumors from transgenic mice. Cancer Res 64: 538–546

    Article  CAS  PubMed  Google Scholar 

  59. Riley RR, Duensing S, Brake T, Munger K, Lambert PF, Arbeit JM (2003) Dissection of human papillomavirus E6 and E7 function in transgenic mouse models of cervical carcinogenesis. Cancer Res 63: 4862–4871

    CAS  PubMed  Google Scholar 

  60. Hernando E, Nahle Z, Juan G, Diaz-Rodriguez E, Alaminos M, Hemann M, Michel L, Mittal V, Gerald W, Benezra R et al. (2004) Rb inactivation promotes genomic instability by uncoupling cell cycle progression from mitotic control. Nature 430: 797–802

    Article  CAS  PubMed  Google Scholar 

  61. Duensing S, Munger K (2003) Human papillomavirus type 16 E7 oncoprotein can induce abnormal centrosome duplication through a mechanism independent of retinoblastoma protein family members. J Virol 77: 12331–12335

    Article  CAS  PubMed  Google Scholar 

  62. Duensing S, Duensing A, Lee DC, Edwards KM, Piboonniyom S, Manuel E, Skaltsounis L, Meijer L, Munger K (2004) The cyclin-dependent kinase inhibitor indirubin-3’-oxime selectively inhibits human papillomavirus type 16 E7-induced numerical centrosome anomalies. Oncogene 23: 8206–8215

    CAS  PubMed  Google Scholar 

  63. Ortega S, Prieto I, Odajima J, Martin A, Dubus P, Sotillo R, Barbero JL, Malumbres M, Barbacid M (2003) Cyclin-dependent kinase 2 is essential for meiosis but not for mitotic cell division in mice. Nat Genet 35: 25–31

    Article  CAS  PubMed  Google Scholar 

  64. Tetsu O, McCormick F (2003) Proliferation of cancer cells despite CDK2_inhibition. Cancer Cell 3: 233–245

    Article  CAS  PubMed  Google Scholar 

  65. Duensing S, Münger K (2002) The human papillomavirus type 16 E6 and E7 oncoproteins independently induce numerical and structural chromosome instability. Cancer Res 62: 7075–7082

    CAS  PubMed  Google Scholar 

  66. McClintock B (1940) The stability of broken ends of chromosomes in Zea mays. Genetics 26: 234–282

    Google Scholar 

  67. Hackett JA, Feldser DM, Greider CW (2001) Telomere dysfunction increases mutation rate and genomic instability. Cell 106: 275–286

    Article  CAS  PubMed  Google Scholar 

  68. Kessis TD, Connolly DC, Hedrick L, Cho KR (1996) Expression of HPV16 E6 or E7 increases integration of foreign DNA. Oncogene 13: 427–431

    CAS  PubMed  Google Scholar 

  69. Iftner T, Elbel M, Schopp B, Hiller T, Loizou JI, Caldecott KW, Stubenrauch F (2002) Interference of papillomavirus E6 protein with single-strand break repair by interaction with XRCC1. Embo J 21: 4741–4748

    Article  CAS  PubMed  Google Scholar 

  70. Thompson DA, Belinsky G, Chang TH-T, Jones DL, Schlegel R, Münger K (1997) The human papillomavirus-16 E6 oncoprotein decreases the vigilance of mitotic checkpoints. Oncogene 15: 3025–3036

    Article  CAS  PubMed  Google Scholar 

  71. Thomas JT, Laimins LA (1998) Human papillomavirus oncoproteins E6 and E7 independently abrogate the mitotic spindle checkpoint. J Virol 72: 1131–1137

    CAS  PubMed  Google Scholar 

  72. Patel D, Incassati A, Wang N, McCance DJ (2004) Human papillomavirus type 16 E6 and E7 cause polyploidy in human keratinocytes and up-regulation of G2-M-phase proteins. Cancer Res 64: 1299–1306

    Article  CAS  PubMed  Google Scholar 

  73. Thierry F, Benotmane MA, Demeret C, Mori M, Teissier S, Desaintes C (2004) A genomic approach reveals a novel mitotic pathway in papillomavirus carcinogenesis. Cancer Res 64: 895–903

    Article  CAS  PubMed  Google Scholar 

  74. Tsukasaki K (2002) Genetic instability of adult T-cell leukemia/lymphoma by comparative genomic hybridization analysis. J Clin Immunol 22: 57–63

    Article  CAS  PubMed  Google Scholar 

  75. Tsukasaki K, Krebs J, Nagai K, Tomonaga M, Koeffler HP, Bartram CR, Jauch A (2001) Comparative genomic hybridization analysis in adult T-cell leukemia/lymphoma: correlation with clinical course. Blood 97: 3875–3881

    Article  CAS  PubMed  Google Scholar 

  76. Jin DY, Spencer F, Jeang KT (1998) Human T cell leukemia virus type 1 oncoprotein Tax targets the human mitotic checkpoint protein MAD1. Cell 93: 81–91

    Article  CAS  PubMed  Google Scholar 

  77. Haoudi A, Daniels RC, Wong E, Kupfer G, Semmes OJ (2003) Human T-cell leukemia virus-I tax oncoprotein functionally targets a subnuclear complex involved in cellular DNA damageresponse. J Biol Chem 278: 37736–37744

    Article  CAS  PubMed  Google Scholar 

  78. Semmes OJ, Jeang KT (1996) Localization of human T-cell leukemia virus type 1 tax to subnuclear compartments that overlap with interchromatin speckles. J Virol 70: 6347–6357

    CAS  PubMed  Google Scholar 

  79. Park HU, Jeong JH, Chung JH, Brady JN (2004) Human T-cell leukemia virus type 1 Tax interacts with Chk1 and attenuates DNA-damage induced G2 arrest mediated by Chk1. Oncogene 23: 4966–4974

    CAS  PubMed  Google Scholar 

  80. Jeang KT, Giam CZ, Majone F, Aboud M (2004) Life, death, and tax: role of HTLV-I oncoprotein in genetic instability and cellular transformation. J Biol Chem 279: 31991–31994

    Article  CAS  PubMed  Google Scholar 

  81. Lemoine FJ, Marriott SJ (2002) Genomic instability driven by the human T-cell leukemia virus type I (HTLV-I) oncoprotein, Tax. Oncogene 21: 7230–7234

    Article  CAS  PubMed  Google Scholar 

  82. Shimura M, Onozuka Y, Yamaguchi T, Hatake K, Takaku F, Ishizaka Y (1999) Micronuclei formation with chromosome breaks and gene amplification caused by Vpr, an accessory gene of human immunodeficiency virus. Cancer Res 59: 2259–2264

    CAS  PubMed  Google Scholar 

  83. Shimura M, Tanaka Y, Nakamura S, Minemoto Y, Yamashita K, Hatake K, Takaku F, Ishizaka Y (1999) Micronuclei formation and aneuploidy induced by Vpr, an accessory gene of human immunodeficiency virus type 1. Faseb J 13: 621–637

    CAS  PubMed  Google Scholar 

  84. Minemoto Y, Shimura M, Ishizaka Y, Masamune Y, Yamashita K (1999) Multiple centrosome formation induced by the expression of Vpr gene of human immunodeficiency virus. Biochem Biophys Res Commun 258: 379–384

    Article  CAS  PubMed  Google Scholar 

  85. Rickinson AB, Kieff E (2001) Epstein-Barr Virus. In: DM Knipe, PM Howley (eds): Fields Virology. Lippincott Williams and Wilkins, Philadelphia, 2575–2627

    Google Scholar 

  86. Liu MT, Chen YR, Chen SC, Hu CY, Lin CS, Chang YT, Wang WB, Chen JY (2004) Epstein-Barr virus latent membrane protein 1 induces micronucleus formation, represses DNA repair and enhances sensitivity to DNA-damaging agents in human epithelial cells. Oncogene 23: 2531–2539

    CAS  PubMed  Google Scholar 

  87. Chang Y, Cesarman E, Pessin MS, Lee F, Culpepper J, Knowles DM, Moore PS (1994) Identification of herpesvirus-like DNA sequences in AIDS-associated Kaposi’s sarcoma. Science 266: 1865–1869

    CAS  PubMed  Google Scholar 

  88. Moore PS, Chang YE (2001) Kaposi’s Sarcoma-Associated Herpesvirus. In: DM Knipe, PM Howley (eds): Fields Virology. Lippincott Williams and Wilkins, Philadelphia, 2803–2833

    Google Scholar 

  89. Verschuren EW, Klefstrom J, Evan GI, Jones N (2002) The oncogenic potential of Kaposi’s sarcoma-associated herpesvirus cyclin is exposed by p53 loss in vitro and in vivo. Cancer Cell 2: 229–241

    Article  CAS  PubMed  Google Scholar 

  90. Verschuren EW, Hodgson JG, Gray JW, Kogan S, Jones N, Evan GI (2004) The role of p53 in suppression of KSHV cyclin-induced lymphomagenesis. Cancer Res 64: 581–589

    Article  CAS  PubMed  Google Scholar 

  91. Pan H, Zhou F, Gao SJ (2004) Kaposi’s sarcoma-associated herpesvirus induction of chromosome instability in primary human endothelial cells. Cancer Res 64: 4064–4068

    Article  CAS  PubMed  Google Scholar 

  92. Wu X, Avni D, Chiba T, Yan F, Zhao Q, Lin Y, Heng H, Livingston D (2004) SV40 T antigen interacts with Nbs1 to disrupt DNA replication control. Genes Dev 18: 1305–1316

    Article  CAS  PubMed  Google Scholar 

  93. Cotsiki M, Lock RL, Cheng Y, Williams GL, Zhao J, Perera D, Freire R, Entwistle A, Golemis EA, Roberts TM et al. (2004) Simian virus 40 large T antigen targets the spindle assembly checkpoint protein Bub1. Proc Natl Acad Sci USA 101: 947–952

    Article  CAS  PubMed  Google Scholar 

  94. Ricciardiello L, Baglioni M, Giovannini C, Pariali M, Cenacchi G, Ripalti A, Landini MP, Sawa H, Nagashima K, Frisque RJ et al. (2003) Induction of chromosomal instability in colonic cells by the human polyomavirus JC virus. Cancer Res 63: 7256–7262

    CAS  PubMed  Google Scholar 

  95. Hollinger FB, Liang TJ (2001) Hepatitis B Virus. In: DM Knipe, PM Howley (eds): Fields Virology. Lippincott Williams and Wilkins, Philadelphia, 2971–3036

    Google Scholar 

  96. Forgues M, Difilippantonio MJ, Linke SP, Ried T, Nagashima K, Feden J, Valerie K, Fukasawa K, Wang XW (2003) Involvement of Crm1 in hepatitis B virus X protein-induced aberrant centriole replication and abnormal mitotic spindles. Mol Cell Biol 23: 5282–5292

    Article  CAS  PubMed  Google Scholar 

  97. Yun C, Cho H, Kim SJ, Lee JH, Park SY, Chan GK (2004) Mitotic aberration coupled with centrosome amplification is induced by hepatitis B virus X oncoprotein via the Ras-mitogen-activated protein/extracellular signal-regulated kinase-mitogen-activated protein pathway. Mol Cancer Res 2: 159–169

    CAS  PubMed  Google Scholar 

  98. De Luca A, Mangiacasale R, Severino A, Malquori L, Baldi A, Palena A, Mileo AM, Lavia P, Paggi MG (2003) E1A deregulates the centrosome cycle in a Ran GTPase-dependent manner. Cancer Res 63: 1430–1437

    PubMed  Google Scholar 

  99. Carbone M, Klein G, Gruber J, Wong M (2004) Modern criteria to establish human cancer etiology. Cancer Res 64: 5518–5524

    Article  CAS  PubMed  Google Scholar 

  100. McDougall JK (2001) “Hit and run” transformation leading to carcinogenesis. Dev Biol (Basel) 106: 77–82

    CAS  Google Scholar 

  101. Eigen M (2002) Error catastrophe and antiviral strategy. Proc Natl Acad Sci USA 99: 13374–13376

    Article  CAS  PubMed  Google Scholar 

  102. Vidwans SJ, Wong ML, O’Farrell PH (2003) Anomalous centriole configurations are detected in Drosophila wing disc cells upon Cdk1 inactivation. J Cell Sci 116: 137–143

    Article  CAS  PubMed  Google Scholar 

  103. Duensing S, Lee BH, Dal Cin P, Münger K (2003) Excessive centrosome abnormalities without ongoing numerical chromosome instability in a Burkitt’s lymphoma. Molecular Cancer 2: 30

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Birkhäuser Verlag/Switzerland

About this chapter

Cite this chapter

Münger, K., Hayakawa, H., Nguyen, C.L., Melquiot, N.V., Duensing, A., Duensing, S. (2006). Viral carcinogenesis and genomic instability. In: Cancer: Cell Structures, Carcinogens and Genomic Instability. Experientia Supplementum, vol 96. Birkhäuser Basel. https://doi.org/10.1007/3-7643-7378-4_8

Download citation

Publish with us

Policies and ethics