Skip to main content

Actions of radiation on living cells in the “post-bystander” era

  • Chapter
Cancer: Cell Structures, Carcinogens and Genomic Instability

Part of the book series: Experientia Supplementum ((EXS,volume 96))

Abstract

Over the past 20 years there has been increasing evidence that cells and the progeny of cells surviving a dose of ionizing radiation can exhibit a wide range of effects inconsistent with the level of dose received. Recently, the cause of these delayed effects has been ascribed to so-called bystander effects, occurring in cells not directly hit by an ionizing track, but which are influenced by signals from irradiated cells. These effects are not necessarily deleterious, although most of the literature deals with adverse delayed effects. What is important to consider is what, if anything, these effects mean for what is still the central dogma of radiobiology and radiation protection, i.e., that DNA double-strand breaks are the primary radiation-induced lesion that can be quantifiably related to received dose, and which determine the probability that a cancer will result from a radiation exposure. In this chapter we review the history of radiation biology which led to the DNA paradigm. We explore the issues and the evidence which are now challenging the view that dose deposition in DNA is all important. We conclude that in the low-dose region, the primary determinant of radiation exposure outcome is the genetic and epigenetic background of the individual and not the dose. This effectively dissociates dose from effect as a quantitative relationship, but it does not necessarily mean that the effect is unrelated to DNA damage somewhere in the system.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Lea DE (1962) Actions of Radiations on Living Cells. 2nd edn. Cambridge University Press, Cambridge, UK

    Google Scholar 

  2. Timofeeff-Ressovsky NW, Zimmer KG (1947) Das Trefferprinzip in der Biologie. S. Herzel Verlag, Leipzig

    Google Scholar 

  3. Gray LH (1954) Conditions which affect the biologic damage resulting from exposure to radiation. Acta Radiol 41: 63–83

    CAS  PubMed  Google Scholar 

  4. Savage JRK (2002) Reflections and meditations upon complex chromosomal changes. Mutation Res 512: 93–109

    CAS  PubMed  Google Scholar 

  5. Alper T (1979) Cellular Radiobiology. Cambridge University Press, Cambridge, UK

    Google Scholar 

  6. Kellerer AM, Rossi HH (1972) The Theory of Dual Radiation Action. Curr Topics Radiat Res 8: 85–158

    CAS  Google Scholar 

  7. Chadwick KH, Leenhouts HP (1973) A molecular theory of cell survival. Phys Med Biol 18: 78–87

    Article  CAS  PubMed  Google Scholar 

  8. Barendsen GW (1994) RBE-LET relationships for different types of lethal radiation damage in mammalian cells: comparison with DNA dsb and an interpretation of differences in radiosensitivity. Int J Radiat Biol 66: 433–436

    CAS  PubMed  Google Scholar 

  9. Pieffer P (1988) The mutagenic potential of DNA double-strand break repair. Toxicol Lett 96–97: 119–129

    Google Scholar 

  10. Alper T (1977) The role of membrane damage in radiation-induced cell death. Adv Exp Med Biol 84: 139–165

    CAS  PubMed  Google Scholar 

  11. Freeman BA, Crapo JD (1982) Biology of disease: free radicals and tissue injury. Lab Invest 47: 412–426

    CAS  PubMed  Google Scholar 

  12. Elkind MM, Whitmore GF (1967) The Radiobiology of Cultured Mammalian Cells. Gordon and Breach, New York

    Google Scholar 

  13. Sinclair WK (1964) X-ray-induced heritable damage small-colony formation) in cultured mammalian cells. Radiat Res 21: 584–611

    CAS  PubMed  Google Scholar 

  14. Beer JZ, Szumiel I (1975) Heritable cell cycle disturbances and late recovery in x-irradiated murine lymphoma L5178Y-S cell populations in vitro. Adv Exp Med Biol 53: 497–509

    CAS  PubMed  Google Scholar 

  15. Beer JZ (1968) Hereditary radiation-induced lesions in somatic mammalian cells. Postepy Biochem 14: 463–472

    CAS  PubMed  Google Scholar 

  16. Joshi GP, Nelson WJ, Revell SH, Shaw CA (1982) Discrimination of slow growth from non-survival among small colonies of diploid Syrian hamster cells after chromosome damage induced by a range of x-ray doses. Int J Radiat Biol Relat Stud Phys Chem Med 42: 283–296

    CAS  PubMed  Google Scholar 

  17. Todd P (1968) Defective mammalian cells isolated from x-irradiated cultures, Mutat Res 5: 173–183

    CAS  PubMed  Google Scholar 

  18. Todd PW (1975) Heavy-ion irradiation of human and Chinese hamster cells in vitro. Radiat Res 61: 288–297

    CAS  PubMed  Google Scholar 

  19. Powers EL (1962) Considerations of Survival Curves and Target Theory. Physics Med Biol 7: 3–28

    CAS  Google Scholar 

  20. Orr JS, Hope CS, Wakerley SE, Stark JM (1966) A metabolic theory of cell survival curves. Phys Med Biol 11: 103–108

    Article  CAS  PubMed  Google Scholar 

  21. Laurie J, Orr JS, Foster CJ (1972) Repair processes and cell survival. Br J Radiol 45: 362–368

    CAS  PubMed  Google Scholar 

  22. Alper T, Gilles NE, Elkind MM (1960) The sigmoid survival curve in radiobiology. Nature (Lond) 186: 1062–1063

    CAS  Google Scholar 

  23. Leyko W, Bartosz G (1986) Membrane effects of ionizing radiation and hyperthermia. Int J Radiat Biol Relat Stud Phys Chem Med 49: 743–770

    CAS  PubMed  Google Scholar 

  24. Radford IR (1999) Initiation of ionizing radiation-induced apoptosis: DNA damage-mediated or does ceramide have a role? Int J Radiat Biol 75: 521–528

    CAS  PubMed  Google Scholar 

  25. Dainiak N, Tan BJ (1995) Utility of biological membranes as indicators for radiation exposure: alterations in membrane structure and function over time. Stem Cells 13(Suppl 1): 142–152

    CAS  PubMed  Google Scholar 

  26. Gulbins E, Kolesnick R (2003) Raft ceramide in molecular medicine. Oncogene 22: 7070–7077

    Article  CAS  PubMed  Google Scholar 

  27. Lucero H, Gae D, Tacioli GE (2003) Novel localization of the DNA-PK complex in lipid rafts: a putative role in the signal transduction pathway of the ionizing radiation response. J Biol Chem 278: 22136–22243

    Article  CAS  PubMed  Google Scholar 

  28. Bendritter M, Vincent-Genod L, Pouget JP, Voisin P (2003) The cell membrane as a biosensor of oxidative stress induced by radiation exposure: a multiparameter investigation. Radiat Res 159: 471–83

    Google Scholar 

  29. Azzam EI, de Toledo SM, Little JB (2003) Oxidative metabolism, gap junctions and the ionizing radiation-induced bystander effect. Oncogene 22: 7050–7057

    Article  CAS  PubMed  Google Scholar 

  30. Koehler CM, Bauer, Matthias F (eds): (2004) Mitochondrial Function and Biogenesis Series. Topics in Current Genetics, Vol. 8

    Google Scholar 

  31. Gaziev AI, Podlutskii AI (2003) Low efficiency of DNA repair system in mitochondria. Tsitologiia 45: 403–417

    CAS  PubMed  Google Scholar 

  32. Ferlini C, D’Amelio R, Scambia G (2002) Apoptosis induced by ionizing radiation. The biological basis of radiosensitivity. Subcell Biochem 36: 171–186

    CAS  PubMed  Google Scholar 

  33. Janssen YM, Van Houten B, Borm PJ, Mossman BT (1993) Cell and tissue responses to oxidative damage. Lab Invest 69: 261–274

    CAS  PubMed  Google Scholar 

  34. Kang D, Hamasaki N (2003) Mitochondrial oxidative stress and mitochondrial DNA. Clin Chem Lab Med 41: 1281–1288

    Article  CAS  PubMed  Google Scholar 

  35. Hume SP, Field SB (1977) Acid phosphatase activity following hyperthermia of mouse spleen and its implication in heat potentiation of X-ray damage. Radiat Res 72: 145–153

    CAS  PubMed  Google Scholar 

  36. Abok K, Rundquist I, Forsberg B, Brunk U (1984) Dimethylsulfoxide increases the survival and lysosomal stability of mouse peritoneal macrophages exposed to low-LET ionizing radiation and/or ionic iron in culture. Virchows Arch B Cell Pathol Incl Mol Pathol 46: 307–320

    CAS  PubMed  Google Scholar 

  37. Fatemi SH, Antosh M, Cullan GM, Sharp JG (1985) Late ultrastructural effects of heavy ions and gamma irradiation in the gastrointestinal tract of the mouse. Virchows Arch B Cell Pathol Incl Mol Pathol 48: 325–340

    CAS  PubMed  Google Scholar 

  38. Lorimore SA, Coates PJ, Scobie GE, Milne G, Wright EG (2001) Inflammatory-type responses after exposure to ionizing radiation in vivo: a mechanism for radiation-induced bystander effects? Oncogene 20: 7085–7095

    Article  CAS  PubMed  Google Scholar 

  39. Tappel A (2005) Lysosomal enzymes and initiation of breast cancer. Med Hypotheses 64: 288–289

    CAS  PubMed  Google Scholar 

  40. Yang VV, Stearner SP, Dimitrievich GS, Griem ML (1977) Radiation damage to the microvasculature in the rabbit ear chamber. An electron microscope study. Radiat Res 70: 107–117

    CAS  PubMed  Google Scholar 

  41. Rich KA, Kerr JB, de Kretser DM (1979) Evidence for Leydig cell dysfunction in rats with seminiferous tubule damage. Mol Cell Endocrinol 13: 123–135

    Article  CAS  PubMed  Google Scholar 

  42. Zhang LL, Collier PA, Ashwell KW (1995) Mechanisms in the induction of neuronal heterotopiae following prenatal cytotoxic brain damage. Neurotoxicol Teratol 17: 297–311

    Article  CAS  PubMed  Google Scholar 

  43. Behrend L, Stoter M, Kurth M, Rutter G, Heukeshoven J, Deppert W, Knippschild U (2000) Interaction of casein kinase 1 delta (CK1delta) with post-Golgi structures, microtubules and the spindle apparatus. Eur J Cell Biol 79: 240–251

    Article  CAS  PubMed  Google Scholar 

  44. Bennett CB, Lewis LK, Karthikeyan G, Lobachev KS, Jin YH, Sterling JF (2001) Snipe JR, Resnick MA. Genes required for ionizing radiation resistance in yeast. Nat Genet 29: 426–434

    Article  CAS  PubMed  Google Scholar 

  45. Aonuma M, Nasu M, Iwata H, Yosue T (2004) Radioprotection of the murine submandibular gland by isoproterenol: autoradiography study with 3H-leucine. Odontology 92: 14–21

    Article  CAS  PubMed  Google Scholar 

  46. Arendarcik J, Stanikova A, Rajtova V, Molnarova M (1983) Changes in the hypothalamus in continuously irradiated sheep. Vet Med (Praha) 28: 519–527

    CAS  Google Scholar 

  47. Khizhniak SV, Voitsitskii VM, Ostapchenko SG, Kucherenko NE (1990) The effect of ionizing radiation on Ca2+-ATPase activity from the sarcoplasmic reticulum of rabbit skeletal muscles. Ukr Biokhim Zh 62: 58–63

    CAS  PubMed  Google Scholar 

  48. Ueda T, Toyoshima Y, Moritani T, Ri K, Otsuki N, Kushihashi T, Yasuhara H, Hishida T (1996) Protective effect of dipyridamole against lethality and lipid peroxidation in liver and spleen of the ddY mouse after whole-body irradiation. Int J Radiat Biol 69: 199–204

    Article  CAS  PubMed  Google Scholar 

  49. Koufen P, Brdiczka D, Stark G (2000) Inverse dose-rate effects at the level of proteins observed in the presence of lipids. Int J Radiat Biol 76: 625–631

    CAS  PubMed  Google Scholar 

  50. Schroder M, Kaufman RJ (2005) ER stress and the unfolded protein response. Mutat Res 569: 29–63

    PubMed  Google Scholar 

  51. Rudner J, Lepple-Wienhues A, Budach W, Berschauer J, Friedrich B, Wesselborg S, Schulze-Osthoff K, Belka C (2001) Wild-type, mitochondrial and ER-restricted Bcl-2 inhibit DNA damage-induced apoptosis but do not affect death receptor-induced apoptosis. J Cell Sci 114: 4161–4172

    CAS  PubMed  Google Scholar 

  52. Oloumi A, Lam W, Banath JP, Olive PL (2002) Identification of genes differentially expressed in V79 cells grown as multicell spheroids. Int J Radiat Biol 78: 483–492

    Article  CAS  PubMed  Google Scholar 

  53. Seymour CB, Mothersill C, Alper T (1986) High yields of lethal mutations in somatic mammalian cells that survive ionizing radiation. Int J Radiat Biol 50: 167–179

    CAS  Google Scholar 

  54. Gorgojo L, Little JB (1989) Expression of lethal mutations in progeny of irradiated mammalian cells. Int J Radiat Biol 55: 619–630

    CAS  PubMed  Google Scholar 

  55. Born R, Trott KR (1988) Clonogenicity of the progeny of surviving cells after irradiation. Int J Radiat Biol Relat Stud Phys Chem Med 53: 319–330

    CAS  PubMed  Google Scholar 

  56. Mendonca MS, Kurohara W, Antoniono R, Redpath JL (1989) Plating efficiency as a function of time postirradiation: evidence for the delayed expression of lethal mutations. Radiat Res 119: 387–393

    CAS  PubMed  Google Scholar 

  57. Pampfer S, Streffer C (1989) Increased chromosome aberration levels in cellsfrommouse fetuses after zygote X-irradiation. Int J Radiat Biol 55: 85–92

    CAS  PubMed  Google Scholar 

  58. Kadhim MA, MacDonald A, Goodhead DT, Lorimore SA, Marsden SJ, Wright EG (1992) Transmission of chromosomal instability after plutonium-particle irradiation. Nature 355: 738–740

    Article  CAS  PubMed  Google Scholar 

  59. Marder BA, Morgan WF (1993) Delayed chromosomal instability induced by DNA damage. Mol Cell Biol 13: 6667–6677

    CAS  PubMed  Google Scholar 

  60. Prise KM, Belyakov OV, Folkard M, Michael BD (1998) Studies of bystander effects in human fibroblasts using a charged particle microbeam. Int J Radiat Biol 74: 793–798

    CAS  PubMed  Google Scholar 

  61. Nagasawa H, Little JB (1992) Induction of sister-chromatid exchanges by extremely low doses of alpha particles: Cancer Res 52: 6394–6396

    CAS  PubMed  Google Scholar 

  62. Deshpande A, Goodwin EH, Bailey SM, Marrone BL, Lehnert BE (1996) Alpha-particle induced sister chromatid exchange in normal human lung fibroblasts: Evidence for an extranuclear target. Radiat Res 145: 260–267

    CAS  PubMed  Google Scholar 

  63. Mothersill C, Seymour C (1997) Medium from irradiated human epithelial cells but not human fibroblasts reduces the clonogenic survival of unirradiated cells. Int J Radiat Biol 71: 421–427

    CAS  PubMed  Google Scholar 

  64. Mothersill C, Seymour CB (1998) Cell-cell contact during gamma irradiation is not required to induce a bystander effect in normal human keratinocytes: evidence for release during irradiation of a signal controlling survival into the medium. Radiat Res 149: 256–262

    CAS  PubMed  Google Scholar 

  65. Lorimore SA, Kadhim MA, Pocock DA, Papworth D, Stevens DL, Goodhead DT, Wright EG (1998) Chromosomal instability in the descendants of unirradiated surviving cells after alpha-particle irradiation: Proc Natl Acad Sci USA 95: 5730–5733

    Article  CAS  PubMed  Google Scholar 

  66. Zhou H, Randers-Pehrson G, Waldren CA, Vannais D, Hall EJ, Hei TK (2000) Induction of a bystander mutagenic effect of alpha-particles in mammalian cells: Proc Natl Acad Sci USA 97: 2099–2104

    CAS  PubMed  Google Scholar 

  67. Seymour CB, Mothersill C (1997) Delayed expression of lethal mutations and genomic instability in the progeny of human epithelial cells which survived in a bystander killing environment: Radiat Oncol Invest 5: 106–110

    Article  CAS  Google Scholar 

  68. Lewis DA, Mayhugh BM, Qin Y, Trott K, Mendonca MS (2001) Production of delayed death and neoplastic transformation in CGL1 cells by radiation-induced bystander effects. Radiat Res 156: 251–258

    CAS  PubMed  Google Scholar 

  69. Watson GE, Lorimore SA, Macdonald DA, Wright EG (2000) Chromosomal instability in unirradiated cells induced in vivo by a bystander effect of ionizing radiation. Cancer Res 60: 5608–5611

    CAS  PubMed  Google Scholar 

  70. Mothersill C, Seymour CB (2001) Radiation-induced bystander effects: past history and future directions. Radiat Res 155: 759–767

    CAS  PubMed  Google Scholar 

  71. Morgan WF (2003) Non-targeted and delayed effects of exposure to ionizing radiation: I. Radiation-induced genomic instability and bystander effects in vitro. Radiat Res 159: 567–580

    CAS  PubMed  Google Scholar 

  72. Mothersill C, Seymour C (2003) Low-dose radiation effects: experimental hematology and the changing paradigm. J Exper Haematol 31: 437–445

    Google Scholar 

  73. Lorimore SA, Wright EG. (2003) Radiation-induced genomic instability and bystander effects: related inflammatory-type responses to radiation-induced stress and injury? A review. Internat J Radiat Biol 79: 15–25

    CAS  Google Scholar 

  74. Little JB, Morgan WF (2003) Guest editors of special issue. Oncogene 13: 6977

    Google Scholar 

  75. Parsons WB, Watkins CH, Pease GL, Childs DS (1954) Changes in sternal bone marrow following roentgen-ray therapy to the spleen in chronic granulocytic leukemia. Cancer 7: 179–189

    PubMed  Google Scholar 

  76. Souto J (1962) Tumour development in the rat induced by the blood of irradiated animals. Nature 195: 1317–1318

    CAS  PubMed  Google Scholar 

  77. Hollowell JG, Littlefield LG (1967) Chromosome aberrations induced by plasma from irradiated patients. A brief report. JSC Med Assoc 63: 437–4278

    Google Scholar 

  78. Goh K, Sumner H (1968) Breaks in normal human chromosomes: Are they induced by a transferable substance in the plasma of persons exposed to total-body irradiation? Radiat Res 35: 171–181

    CAS  PubMed  Google Scholar 

  79. Hollowell JG, Littlefield LG (1968) Littlefield. Chromosome damage induced by plasma of X-rayed patient: An indirect effect of radiation. Proc Soc Exp Biol Med 129: 240–244

    PubMed  Google Scholar 

  80. Littlefield LG, Hollowell JG, Pool WH (1969) Chromosomal aberrations induced by plasma from irradiated patients: An indirect effect of X-radiation. Radiology 93: 879–886

    CAS  PubMed  Google Scholar 

  81. Scott D (1969) The effect of irradiated plasma on normal human chromosomes and its relevance to the long-lived lymphocyte hypothesis. Cell Tissue Kinet 2: 295–305

    Google Scholar 

  82. Goyanes-Villaescusa V (1971) Chromosomal abnormalities in lymphocytes of children and baby rabbits born from mothers treated by X-irradiation before pregnancy. A transplacentary plasmatic chromosome damage factor? Blut 22: 93–96

    Article  CAS  PubMed  Google Scholar 

  83. Demoise CF, Conard RA (1972) Effects of age and radiation exposure on chromosomes in a Marshall island population. J Gerontol 27: 197–201

    CAS  PubMed  Google Scholar 

  84. Faguet GB, Reichard SM, Welter DA (1984) Radiation-induced clastogenic factors. Cancer Genet Cytogenet 12: 73–83

    Article  CAS  PubMed  Google Scholar 

  85. Pant GS, Kamada N (1977) Chromosome aberrations in normal leukocytes induced by the plasma of exposed individuals. Hiroshima J Med Sci 26: 149–154

    CAS  PubMed  Google Scholar 

  86. Emerit I, Cerutti P (1981) Clastogenic activity from Bloom syndrome fibroblast cultures. Proc Natl Acad Sci USA 78: 1868–1872

    CAS  PubMed  Google Scholar 

  87. Kahn SH, Emerit I (1985) Lipid peroxidation products and clastogenic in culture media of human leukocytes exposed to the tumour promoter phorbol-myristate-acetate. Free Radic Biol Med 1: 443–449

    Google Scholar 

  88. Emerit I (1994) Reactive oxygen species, chromosome mutation and cancer: A possible role of clastogenic factors in carcinogenesis. Free Radic Biol Med 16: 985–991

    Article  Google Scholar 

  89. Emerit I, Arutyunyan R, Oganesian N, Levy A, Cerniavsky L, Sarkisian T, Pogossian A, Asrian K (1995) Radiation-induced clastogenic factors; Anticlastogenic effect of Ginkgo biloba extract. Free Radic Biol Med 18: 985–991

    Article  CAS  PubMed  Google Scholar 

  90. Seymour CB, Mothersill C (2000) Relative contribution of bystander and targeted cell killing to the low-dose region of the radiation dose-response curve. Radiat Res 153: 508–511

    CAS  PubMed  Google Scholar 

  91. Bacq ZM, Alexander P (1955) Fundamentals in Radiobiology. Butterworth, London

    Google Scholar 

  92. Hall EJ (2000) Radiobiology for the Radiologist. 5th edn, Lippincott Williams and Wilkins, Philadelphia

    Google Scholar 

  93. Elkind MM, Sutton H (1959) X-ray damage and recovery in mammalian cells in culture. Nature 184: 1293–1295

    CAS  PubMed  Google Scholar 

  94. Bender MA, Gooch PC (1962) The kinetics of x-ray survival of mammalian cells in vitro. Int J Radiat Biol 5: 133–145

    CAS  PubMed  Google Scholar 

  95. McNally MJ, de Ronde J (1976) The effect of repeated small doses of radiation on recovery from sub-lethal damage by Chinese hamster cells irradiated in the plateau phase of growth. Int J Radiat Biol 29: 221–234

    CAS  Google Scholar 

  96. Bryant PE (1975) Decrease in sensitivity after split-dose recovery: evidence for the involvement of protein synthesis (letter). Int J Radiat Biol Relat Stud Phys Chem Med 27: 95–102

    CAS  PubMed  Google Scholar 

  97. Wu LJ, Randers-Pehrson G, Xu A, Waldren CA, Geard CR, Yu Z, Hei TK (1999) Targeted cytoplasmic irradiation with alpha particles induces mutations in mammalian cells. Proc Natl Acad Sci USA 96: 4959–4964

    CAS  PubMed  Google Scholar 

  98. Shao C, Folkard M, Michael BD, Prise KM (2004) Targeted cytoplasmic irradiation induces bystander responses. Proc Natl Acad Sci USA 101: 13495–13500

    CAS  PubMed  Google Scholar 

  99. Singh KK (2004) Mitochondria damage checkpoint in apoptosis and genome stability. FEMS Yeast Res 5: 127–132

    CAS  PubMed  Google Scholar 

  100. Chang WP, Little JB (1992) Persistently elevated frequency of spontaneous mutations in progeny of CHO clones surviving X-irradiation: association with delayed reproductive death phenotype. Mutat Res 270:191–199

    CAS  PubMed  Google Scholar 

  101. Limoli CL, Kaplan MI, Phillips JW, Adair GM, Morgan WF (1997) Differential induction of chromosomal instability by DNA strand-breaking agents. Cancer Res 57: 4048–4056

    CAS  PubMed  Google Scholar 

  102. Walicka MA, Adelstein SJ, Kassis AI (1998) Indirect mechanisms contribute to biological effects produced by decay of DNA-incorporated iodine-125 in mammalian cells in vitro: clonogenic survival. Radiat Res 149: 142–146

    CAS  PubMed  Google Scholar 

  103. Suzuki K, Ojima M, Kodama S, Watanabe M (2003) Radiation-induced DNA damage and delayed induced genomic instability. Oncogene 22: 6988–6993

    CAS  PubMed  Google Scholar 

  104. Kashino G, Prise KM, Schettino G, Folkard M, Vojnovic B, Michael BD, Suzuki K, Kodama S, Watanabe M (2004) Evidence for induction of DNA double strand breaks in the bystander response to targeted soft X-rays in CHO cells. Mutat Res 556: 209–215

    CAS  PubMed  Google Scholar 

  105. Nagasawa H, Huo L, Little JB (2003), Increased bystander mutagenic effect in DNA doublestrand break repair-deficient mammalian cells. Int J Radiat Biol 79: 35–41

    CAS  PubMed  Google Scholar 

  106. Mothersill C, Seymour RJ, Seymour CB (2004) Bystander effects in repair deficient cell lines. Radiat Res 161:256–263

    CAS  PubMed  Google Scholar 

  107. Nagar S, Smith LE, Morgan WF (2003) Characterization of a novel epigenetic effect of ionizing radiation: the death-inducing effect. Cancer Res 63: 324–328

    CAS  PubMed  Google Scholar 

  108. Seymour CB, Mothersill C (1991) Chemotherapy agents and the induction of late lethal defects. Anticancer Res 11: 1605–1608

    CAS  PubMed  Google Scholar 

  109. Bishayee A, Hill HZ, Stein D, Rao DV, Howell RW (2001) Free radical-initiated and gap junction-mediated bystander effect due to nonuniform distribution of incorporated radioactivity in a three-dimensional tissue culture model. Radiat Res 155: 335–344

    CAS  PubMed  Google Scholar 

  110. Zhou H, Randers-Pehrson G, Waldren CA, Vannais D, Hall EJ, Hei TK (2000) Induction of a bystander mutagenic effect of alpha particles in mammalian cells. Proc Natl Acad Sci USA 97: 2099–2104

    CAS  PubMed  Google Scholar 

  111. Przybyszewski WM, Widel M, Szurko A, Lubecka B, Matulewicz L, Maniakowski Z, Polaniak R, Birkner E, Rzeszowska-Wolny J (2004) Multiple bystander effect of irradiated megacolonies of melanoma cells on non-irradiated neighbours. Cancer Lett 214: 91–102

    Article  CAS  PubMed  Google Scholar 

  112. Suzuki K, Ojima M, Kodama S, Watanabe M (2005) Delayed activation of a DNA damage checkpoint and radiation-induced genomic instability. Mut Res; in press

    Google Scholar 

  113. Clutton SM, Townsend KM, Walker C, Ansell JD, Wright EG (1996) Radiation-induced genomic instability and persisting oxidative stress in primary bone marrow cultures. Carcinogenesis 17: 1633–1639

    CAS  PubMed  Google Scholar 

  114. Albanese J, Dainiak N (2000) Ionizing radiation alters Fas antigen ligand at the cell surface and on exfoliated plasma membrane-derived vesicles: Implications for apoptosis and intercellular signaling. Radiat Res 153: 49_610

    Google Scholar 

  115. Limoli CL, Hartmann A, Shephard L, Yang CR, Boothman DA, Bartholomew J, Morgan WF (1998) Apoptosis, reproductive failure, and oxidative stress in Chinese hamster ovar cells with compromised genomic integrity. Cancer Res 58: 3712–3718

    CAS  PubMed  Google Scholar 

  116. Rugo RE, Schiestl RH (2004) Increases in oxidative stress in the progeny of X-irradiated cells. Radiat Res 162: 416–425

    CAS  PubMed  Google Scholar 

  117. Singleton BK, Griffin CS, Thacker J (1999) Clustered DNA damage leads to complex changes in irradiated human cells. Cancer Res 62: 6263–6269

    Google Scholar 

  118. Sutherland BM, Bennett PV, Sutherland JC, Laval J (2002) Clustered DNA damages induced by x-rays in human cells. Radiat Res 157: 611–616

    CAS  PubMed  Google Scholar 

  119. Belyakov OV, Folkard M, Mothersill C, Prise KM, Michael BD (2003) A proliferation-dependent bystander effect in primary porcine and human urothelial explants in response to targeted irradiation. Br J Cancer 88: 767–774

    Article  CAS  PubMed  Google Scholar 

  120. Pollycove M, Feinendegen LE (2003) Radiation-induced versus endogenous DNA damage: possible effect of inducible protective responses in mitigating endogenous damage. Hum Exp Toxicol 22: 290–306

    CAS  PubMed  Google Scholar 

  121. Atta-ur-Rahman, Harvey K, Siddiqui RA (1999) Interleukin-8: An autocrine inflammatory mediator. Curr Pharm Des 5: 241–253

    CAS  PubMed  Google Scholar 

  122. Lorimore SA, Coates PJ, Scobie GE, Milne G, Wright EG (2001) Inflammatory-type responses after exposure to ionizing radiation in vivo: a mechanism for radiation-induced bystander effects? Oncogene 20: 7085–7095

    Article  CAS  PubMed  Google Scholar 

  123. Hanawalt PC (1990) Selective DNA repair in active genes. Acta Biol Hung 41: 77–91

    CAS  PubMed  Google Scholar 

  124. Guillet C, Boirie Y, Walrand S (2004) An integrative approach to in vivo protein synthesis measurement: from whole tissue to specific proteins. Curr Opin Clin Nutr Metab Care 7: 531–538

    CAS  PubMed  Google Scholar 

  125. Johnson ES (2004) Protein modification by SUMO. Annu Rev Biochem 73: 355–382

    Article  CAS  PubMed  Google Scholar 

  126. van Laar T, van der Eb AJ, Terleth C (2002) A role for Rad23 proteins in 26S proteasome-dependent protein degradation? Mutat Res 499: 53–61

    PubMed  Google Scholar 

  127. Bignold LP (2004) Chaotic genomes make chaotic cells: the mutator phenotype theory of carcinogenesis applied to clinicopathological relationships of solid tumors. Cancer Invest 22: 338–343

    Article  CAS  PubMed  Google Scholar 

  128. Lord BI (1999) Transgenerational susceptibility to leukaemia induction resulting from preconception, paternal irradiation. Int J Radiat Biol 75: 801–810

    Article  CAS  PubMed  Google Scholar 

  129. Dubrova YE (2003) Radiation-induced transgenerational instability. Oncogene 22: 7087–7093

    Article  CAS  PubMed  Google Scholar 

  130. Lyng FM, Seymour CB, Mothersill C (2002) Early events in the apoptotic cascade initiated in cells treated with medium from the progeny of irradiated cells. Radiat Prot Dosimetry 99: 169–172

    CAS  PubMed  Google Scholar 

  131. Lyng FM, Seymour CB, Mothersill C (2002) Initiation of apoptosis in cells exposed to medium from the progeny of irradiated cells: a possible mechanism for bystander-induced genomic instability? Radiat Res 157: 365–370

    CAS  PubMed  Google Scholar 

  132. Bennett PM (2004) Genome plasticity: insertion sequence elements, transposons and integrons, and DNA rearrangement. Methods Mol Biol 266: 71–113

    CAS  PubMed  Google Scholar 

  133. Timofeeff-Ressovsky NW, Poryadkova NA, Preobrazhenskaya EI (1950-4) Influence of low-dose irradiation on development of plants, Reports, 1950–1954. Funds of Ural Department of USSR Acad Scie

    Google Scholar 

  134. Timofeeff-Ressovsky NV, Ivanov II, Korogodin VI (1972) Die Anwendung des Trefferprinzips in der Strahlengbiologie. VEB Gustav Fischer Verlag, Jena

    Google Scholar 

  135. Korogodin VI, KM Blisnik. (1972) Regularities of radiorace formation in yeasts. Comm.1. Radioraces of diploid yeasts Saccharomyces ellipsoideus vini. Radiobiologiya 12: 267–271

    Google Scholar 

  136. Korogodin VI., Blisnik KM, Kapultzevich YG (1977) Regularities of radiorace formation in yeasts. Comm.11. Facts and hypotheses, Radiobiologiya 17: 492–499

    CAS  Google Scholar 

  137. Korogodin VI, Korogodina VL, Fajszi CS (1990) Mutability of genes depends on their functional state-a hypothesis. Biol Zentbl 109: 447–451

    Google Scholar 

  138. Korogodin VI, Korogodina VL, Fajsz CS, Chepurnoy AI, Mikhova-Tzenova N, Simonyan NV (1991) On the dependence of Spontaneous Mutation Rates on the Functional State of Genes. Yeast 7: 105–118

    Article  CAS  PubMed  Google Scholar 

  139. Korogodin VI (1993) The study of post-irradiation recovery of yeast: the ‘premolecular period’. Mutat Res 289: 17–26

    CAS  PubMed  Google Scholar 

  140. Sandhu SS, Bastos CR, Azini LE, Tulmann Neto A, Colombo C (2002) RAPD analysis of herbicide-resistant Brasilian rice lines produced via mutagenesis. Genet Mol Res 1: 359–370

    CAS  PubMed  Google Scholar 

  141. Lyng FM, Lyons-Alcantara M, Olwell P, Shuilleabhain SN, Seymour C, Cottell DC, Mothersill C (2004) Ionizing radiation induces a stress response in primary cultures of rainbow trout skin. Radiat Res 162: 226–232

    CAS  PubMed  Google Scholar 

  142. Dowling K, Seymour CB, Mothersill C (2005) Delayed cell death and bystander effects in the progeny of Chinook Salmon Embryo cells exposed to radiation and a range of aquatic pollutants. Int J Radiat Biol; in press

    Google Scholar 

  143. O’Reilly JP, Mothersill C (1997) Comparative effects of UV A and UV B on clonogenic survival and delayed cell death in skin cell lines from humans and fish. Int J Radiat Biol 72: 111–119

    CAS  PubMed  Google Scholar 

  144. Mothersill C, Lyng F, Mulford A, Seymour C, Cottell D, Lyons M, Austin B (2001) Effect of low doses of ionizing radiation on cells cultured from the hematopoietic tissue of the Dublin Bay prawn, Nephrops norvegicus. Radiat Res 156: 241–250

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Birkhäuser Verlag/Switzerland

About this chapter

Cite this chapter

Mothersill, C., Seymour, C.B. (2006). Actions of radiation on living cells in the “post-bystander” era. In: Cancer: Cell Structures, Carcinogens and Genomic Instability. Experientia Supplementum, vol 96. Birkhäuser Basel. https://doi.org/10.1007/3-7643-7378-4_7

Download citation

Publish with us

Policies and ethics