Skip to main content

Cancer morphology, carcinogenesis and genetic instability: a background

  • Chapter

Part of the book series: Experientia Supplementum ((EXS,volume 96))

Summary

Morphological abnormalities of both the nuclei and the cell bodies of tumour cells were described by Müller in the late 1830s. Abnormalities of mitoses and chromosomes in tumour cells were described in the late 1880s. Von Hansemann, in the 1890s, suggested that tumour cells develop from normal cells because of a tendency to mal-distribution and other changes of chromosomes occurring during mitosis. In the first decades of the 20th century, Mendelian genetics and “gene mapping” of chromosomes were established, and the dominant or recessive bases of the familial predispositions to certain tumour types were recognised. In the same period, the carcinogenic effects of ionising radiations, of certain chemicals and of particular viruses were described. A well-developed “somatic gene-mutational theory” of tumours was postulated by Bauer in 1928. In support of this, in the next three decades, many environmental agents were found to cause mitotic and chromosomal abnormalities in normal cells as well as mutations in germ-line cells of experimental animals. Nevertheless, mitotic, chromosomal, and other mutational theories were not popular explanations of tumour pathogenesis in the first half of the 20th century. Only in the 1960s did somatic mutational mechanisms come to dominate theories of tumour formation, especially as a result of the discoveries of the reactivity of carcinogens with DNA, and that the mutation responsible for xeroderma pigmentosum causes loss of function of a gene involved in the repair of DNA after damage by ultraviolet light (Cleaver in 1968). To explain the complexity of tumourous phenomena, “multi-hit” models gained popularity over “single-hit” models of somatic mutation, and “epigenetic” mechanisms of gene regulation began to be studied in tumour cells. More recently, the documentation of much larger-than-expected numbers of genomic events in tumour cells (by Stoler and co-workers, in 1999) has raised the issue of somatic genetic instability in tumour cells, a field which was pioneered in the 1970s mainly by Loeb. Here these discoveries are traced, beginning with “nuclear instability” though mitotic-and-chromosomal theories, single somatic mutation theories, “multi-hit” somatic theories, “somatic, non-chromosomal, genetic instability” and epigenetic mechanisms in tumour cells as a background to the chapters which follow.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Hertwig O (1892) The Cell. Outlines of General Anatomy and Physiology. Translation by M. Campbell, 1895. Swan Sonnenschein & Co, London

    Google Scholar 

  2. Wolff J (1907) The Science of Cancerous Diseases from the Earliest Times to the Present. Translation by B Ayoub, and with an introduction by S Jarcho, 1990, Science History Publications, Sagamore Beach, MA

    Google Scholar 

  3. Wilson EB (1924) The Cell in Development and Heredity. 3rd edn., Macmillan, New York

    Google Scholar 

  4. Nordenskiöld E (1928) The History of Biology. Translation by LB Eyre, Tudor Publishing, New York

    Google Scholar 

  5. Cameron GR (1952) Pathology of the Cell. Oliver and Boyd, Edinburgh

    Google Scholar 

  6. Koller PC (1957) The genetic component of cancer. In: RW Raven (ed.): Cancer, Vol 1. Butterworth and Co, London, 335–403

    Google Scholar 

  7. Allen G (1978) Life Science in the Twentieth Century. Cambridge Univ Press, Cambridge

    Google Scholar 

  8. Shimkin MB (1979) Contrary to Nature. US Dept Health, Education and Welfare, Publication No (NIH) 79–720, Washington DC

    Google Scholar 

  9. Rather LJ (1978) The Genesis of Cancer. A study in the History of Ideas. The Johns Hopkins University Press, Baltimore

    Google Scholar 

  10. Harris HA (1995) The Cells of The Body: A History of Somatic Cell Genetics. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY

    Google Scholar 

  11. Harris HA (1999) The Birth of The Cell. Yale University Press, New Haven

    Google Scholar 

  12. Fitzgerald PJ (2000) From Demons and Evil Spirits to Cancer Genes. Armed Forces Institute of Pathology, Washington DC

    Google Scholar 

  13. Dohm G (2001) Geschichte der Histopathologie/History of Histopathology. Springer-Verlag, Berlin

    Google Scholar 

  14. Lima-de-Faria A (2003) One Hundred Years of Chromosome Research, and What Remains To Be Learned. Kluwer, Dordrecht

    Google Scholar 

  15. Carpenter WB (1891) The Microscope and its Revelations. 7th edn. J&A Churchill, London

    Google Scholar 

  16. Bradbury S (1967) The Evolution of the Microscope. Permagon Press, Oxford

    Google Scholar 

  17. Brown R (1833) On the organs and mode of fecundation in Orchideae and Asclepiadeae. Transactions Linnean Soc (London) 26: 685–745 (Communicated to the Linnean Society November 1831)

    Google Scholar 

  18. Hunter J (1837) The Works of John Hunter FRS. Translation by JF Palmer, Longman, London

    Google Scholar 

  19. Schleiden (1838) Contributions to phytogenesis. Translation by H Smith 1847, The Sydenham Society, London

    Google Scholar 

  20. Schwann T (1839) Microscopical researches into the accordance in the structure and growth of animals and plants. Translation by H Smith, 1847, The Sydenham Society, London

    Google Scholar 

  21. Bringmann WG, Lück HE, Miller R, Early CE (eds) (1997) A Pictorial History of Psychology. Quintessence Publishing Co, Carol Stream

    Google Scholar 

  22. Müller J (1838) On the Nature and Structural Characteristics of Cancer and those Morbid Growths which may be Confounded with It. G. Reimer, Berlin. Translation by C West, 1840, Sherwood, Gilbert and Piper, London

    Google Scholar 

  23. Rather LJ, Rather P, Frerichs JB (1986) Johannes Muller and the Nineteenth-Century Origins of Tumor Cell Theory. Science History Publications, Canton

    Google Scholar 

  24. Kölliker A (1852) A Manual of Human Microscopic Anatomy. Translation by G Busk, 1860, Parker, London

    Google Scholar 

  25. Hertwig O (1890) Textbook of the Embryology of Man and Mamals. Translation by EL Mark, 1899, Swan Sonnenschein & Co, London

    Google Scholar 

  26. Gaskin E (1968) Investigation into Generation 1651–1828. Hutchinson, London

    Google Scholar 

  27. Haeckel E (1907) The evolution of man: a popular scientific study. 5th edn, Translation by J McCabe, Watts, London

    Google Scholar 

  28. Bolsche W (1906) Haeckel, his life and work. With introduction and supplementary chapter by the translator, J McCabe. TF Unwin, London

    Google Scholar 

  29. Huxley JS (1958) Introduction to the Mentor edition of the Origin of Species by C Darwin, New American Library, New York, ix–xv

    Google Scholar 

  30. Barnett S (ed.) (1958) A Century of Darwin. Heinemann, London

    Google Scholar 

  31. Bowler PJ (1983) The Eclipse of Darwinism. Johns Hopkins Univ Press, Baltimore

    Google Scholar 

  32. Schwartz JF (1999) Sudden Origins: Fossils, Genes and the Emergence of Species. John Wiley and Sons, New York

    Google Scholar 

  33. Ruse M (1982) Darwinism defended: a guide to the evolution controversies. Addison-Wesley, Advanced Book Program/World Science Division, Reading, Mass, USA

    Google Scholar 

  34. Virchow R (1858) Cellular Pathology as Based Upon Physiological and Pathological Histology. 2nd edn. Translation by F Chance, reprinted 1971 by Dover Publications, New York

    Google Scholar 

  35. Virchow R (1871) Cellular Pathology as Based Upon Physiological and Pathological Histology. 4th edn. A Hirschwald, Berlin

    Google Scholar 

  36. Virchow R (1884) Ueber Metaplasie/On metaplasia. Virchow’s Archives 97: 410–430

    Google Scholar 

  37. Bignold LP (2005) Embryonic reversions and lineage infidelities in tumour cells: genome-based models and role of genetic instability. Int J Exp Pathol 86: 67–79

    Article  CAS  PubMed  Google Scholar 

  38. Cohnheim J (1882) Lectures in General Pathology. Translation by AB McKee 1889. New Sydenham Society, London

    Google Scholar 

  39. Ribbert H (1911) Das Karzinom des Menschen/Human Cancer. Friedrich Cohen, Bonn

    Google Scholar 

  40. Adami JG (1908) The Principles of Pathology, vol 1 General Pathology. Lea and Febiger, Philadelphia

    Google Scholar 

  41. Bashford RF, Murray JA, Cramer W (1905) The Growth of Cancer under Natural and Experimental Conditions. Sci Rpts Imperial Cancer Research Fund, No 2, Part II, Taylor and Francis, London

    Google Scholar 

  42. Ewing J (1940) Neoplastic diseases. 4th edn. Saunders, Philadelphia

    Google Scholar 

  43. Rather LJ (1962) Introduction; Harvey, Virchow, Bernard and the Methodology of Science. In: Disease, Life and Man. Translation and editing by LJ Rather, Collier, New York, 13–38

    Google Scholar 

  44. Ackerknecht EH (1953) Rudolph Virchow, Doctor Statesman Anthropologist. University of Wisconsin Press, Madison, USA, 98–105

    Google Scholar 

  45. Virchow R (1855) Cellular Pathology. Virchow’s Archives, 8:1. Translation by LJ Rather in Disease, Life and Man. Collier, New York, 1962, 86–115

    Google Scholar 

  46. Virchow R (1877) Standpoints in Scientific Medicine. Virchow’s Arch 70:1. Translation by L J Rather in Disease, Life and Man, Collier, New York, 1962, 156–164

    Google Scholar 

  47. Von Hansemann DP (1890) On the Asymmetrical Division of Cells in Epithelial Carcinomata and their Biological Importance. Virchow’s Arch 119:299–326

    Google Scholar 

  48. Klebs E (1889) Die allgemeine Pathologie/General Pathological. Vol 2. G Fisher, Jena

    Google Scholar 

  49. Von Hansemann D (1893) Studien über die Spezificität, den Altruismus und die Anaplasie der Zellen mit besonderer Berücksichtigung der Geschwülste/Studies of the specificity, altruism and anaplasia of cells with special reference to tumours. A Hirschwald, Berlin

    Google Scholar 

  50. Von Hansemann D (1897) Die Mikroscopische Diagnose der Bosartigen Geschwülste/The Microscopic Diagnosis of Malignant Tumours. (2nd edn, 1902). A Hirschwald, Berlin

    Google Scholar 

  51. Dunn LC (1965) A Short History of Genetics. McGraw-Hill, New York

    Google Scholar 

  52. Farley J (1982) Gametes and Spores, Ideas about Sexual Reproduction 1750–1914. Johns Hopkins University Press, Baltimore

    Google Scholar 

  53. Moore RC, Bender MA (1993) Time sequence of events leading to chromosomal aberration formation. Environ Mol Mutagen 22:208–213

    CAS  PubMed  Google Scholar 

  54. O’Connor PJ, Manning FC, Gordon AT, Billett MA, Cooper DP, Elder RH, Margison GP (2000) DNA repair: kinetics and thresholds. Toxicol Pathol 28: 375–381

    CAS  PubMed  Google Scholar 

  55. Klein G, Klein E (1984) Oncogene activation and tumor progression. Carcinogenesis 5: 429–435

    CAS  PubMed  Google Scholar 

  56. Nowell PC (1986) Mechanisms of tumor progression. Cancer Res 46: 2203–2207

    CAS  PubMed  Google Scholar 

  57. Whitman RC (1919) Somatic mutation as a factor in the production of cancer; a critical review of v. Hansemann’s theory of anaplasia in the light of modern knowledge of genetics. J Cancer Res 4: 181–202

    Google Scholar 

  58. Beneke R (1900) A case of osteoid chrodrosarcoma of the urinary bladder, with comments on metaplasia. Virchow’s Arch 161: 70–114

    Google Scholar 

  59. Boveri T (1914) Zur Frage der Entstehung der Malignen Tumoren. G Fischer, Jena. Translation by M Boveri, and published as Origin of Malignant Tumors, 1929, Williams and Wilkins, Baltimore

    Google Scholar 

  60. Bauer KF (1928) Mutationstheorie der Geschwülst-Entstehung/Mutation Theory in Tumour formation. Julius Springer, Berlin

    Google Scholar 

  61. Schneider NR, Williams WR, Chaganti RS (1986) Genetic epidemiology of familial aggregation of cancer. Adv Cancer Res 47: 1–36

    CAS  PubMed  Google Scholar 

  62. Warthin AS (1913) Heredity with reference to carcinoma. Arch Int Med 12: 546–555

    Google Scholar 

  63. Crowe FW, Schull JW, Neel JV (1956) A Clinical, Pathological and Genetic study of Multiple Neurofibromatosis. CC Thomas, Springfield, Illinois

    Google Scholar 

  64. Little CC (1928) Evidence that cancer is not a simple Mendelian recessive. J Cancer Res 12:30–46

    Google Scholar 

  65. Bashford EF, Murray JA (1904) The transmissibility of malignant new growths from one animal to another. Sci Rep Imperial Cancer Research Fund 1: 11–15

    Google Scholar 

  66. Tyzzer EE (1909) A series of spontaneous tumours in mice with observations on the influence of heredity on the frequency of their occurrence. J Med Res 21: 479–518

    Google Scholar 

  67. Woglom WH (1929) Immunity to transplantable tumours. Cancer Rev 4: 129–214

    Google Scholar 

  68. Loeb L (1937) The Biological Basis of Individuality. Charles C Thomas, Springfield, Illinois

    Google Scholar 

  69. Triolo VA (1964) Nineteenth century foundations of cancer research, origins of experimental research. Cancer Res 24: 4–27

    CAS  PubMed  Google Scholar 

  70. Fidler IJ (1986) Rationale and methods for the use of nude mice to study the biology and therapy of human cancer metastasis. Cancer Metastasis Rev 5: 29–49

    CAS  PubMed  Google Scholar 

  71. Kennaway EL, Hieger I (1930) Carcinogenic substances and their fluorescence spectra. Br Med J 1: 1044–1046

    Google Scholar 

  72. Badger GM (1954) Chemical constitution and carcinogenic activity. Adv Cancer Res 2: 73–127

    CAS  PubMed  Google Scholar 

  73. Süss R, Kizel V, Scriber JD (1973) Cancer experiments and concepts. Springer-Verlag, New York

    Google Scholar 

  74. Lawley PD (1994) From fluorescence spectra to mutational spectra, a historical overview of DNA-reactive compounds. IARC Sci Publ 125: 3–22

    CAS  PubMed  Google Scholar 

  75. Bignold LP (2004) Carcinogen-induced impairment of enzymes for replicative fidelity of DNA and the initiation of tumours. Carcinogenesis 25: 299–307

    CAS  PubMed  Google Scholar 

  76. Murrell J (2004) Shedding light on light. Croat Chemica Acta 77: 17–30

    CAS  Google Scholar 

  77. Lea DE (1962) The Actions of Radiations on Living Cells. 2nd edn. Cambridge University Press, Cambridge, UK

    Google Scholar 

  78. Shope RE (1932) A filterable virus causing a tumor-like condition in rabbits and its relationship to myxomatosis. J Exp Med 56: 803–822

    Google Scholar 

  79. Gross L (1983) Oncogenic viruses. 3rd edn. Permagon Press, Oxford, UK

    Google Scholar 

  80. Inoue M (2001) Current molecular aspects of the carcinogenesis of the uterine endometrium. Int J Gynecol Cancer 11: 339–348

    Article  CAS  PubMed  Google Scholar 

  81. Argyris TS (1985) Regeneration and the mechanism of epidermal tumour promotion. Crit Rev Toxicol 14: 211–258

    CAS  PubMed  Google Scholar 

  82. Foulds L (1969) Neoplastic development. (Vol 2, 1975), Academic Press, London

    Google Scholar 

  83. Berenblum I (1958) The study of tumours in experimental animals. In: HW Florey (ed.): General Pathology, 2nd edn. Lloyd-Luke, London, 513–549

    Google Scholar 

  84. Willis RA (1948) Pathology of Tumours, Butterworths, London

    Google Scholar 

  85. Haddow A (1972) Molecular repair, wound healing, and carcinogenesis: tumour production a possible overhealing? Adv Cancer Res 6: 181–234

    Google Scholar 

  86. Apffel CA (1976) Nonimmunological host defenses: a review. Cancer Res 36: 1527–1537

    CAS  PubMed  Google Scholar 

  87. Harris H (1990) The role of differentiation in the suppression of malignancy. J Cell Sci 97: 5–10

    PubMed  Google Scholar 

  88. Bignold LP (2003) The mutator phenotype theory of carcinogenesis and the complex histopathology of tumours: support for the theory from the independent occurrence of nuclear abnormality, loss of specialisation and invasiveness among occasional neoplastic lesions. Cell Mol Life Sci 60: 883–891

    CAS  PubMed  Google Scholar 

  89. Prasad KN, Hovland AR, Nahreini P, Cole WC, Hovland P, Kumar B, Prasad KC. (2001) Differentiation genes: are they primary targets for human carcinogenesis? Exp Biol Med (Maywood) 226: 805–813

    CAS  Google Scholar 

  90. Yuasa Y (2003) Control of gut differentiation and intestinal-type gastric carcinogenesis. Nat Rev Cancer 3: 592–600

    Article  CAS  PubMed  Google Scholar 

  91. Lefort K, Dotto GP (2004) Notch signaling in the integrated control of keratinocyte growth/differentiation and tumor suppression. Semin Cancer Biol 14: 374–386

    Article  CAS  PubMed  Google Scholar 

  92. Verrecchia F, Mauviel A (2002) Transforming growth factor-beta signaling through the Smad pathway: role in extracellular matrix gene expression and regulation. J Invest Dermatol 118: 211–215

    Article  CAS  PubMed  Google Scholar 

  93. Micke P, Ostman A (2004) Tumour-stroma interaction: cancer-associated fibroblasts as novel targets in anti-cancer therapy? Lung Cancer, 45Suppl 2: S163–175

    Google Scholar 

  94. Parmar H, Cunha GR (2004) Epithelial-stromal interactions in the mouse and human mammary gland in vivo. Endocr Relat Cancer 11: 437–458

    Article  CAS  PubMed  Google Scholar 

  95. Zhang Z, Yuan XM, Li LH, Xie FP (2001) Transdifferentiation in neoplastic development and its pathological implication. Histol Histopathol 16: 1249–1262

    CAS  PubMed  Google Scholar 

  96. Ber I, Shternhall K, Perl S, Ohanuna Z, Goldberg I, Barshack I, Benvenisti-Zarum L, Meivar-Levy I, Ferber S (2003) Functional, persistent, and extended liver to pancreas transdifferentiation. J Biol Chem 278: 31950–31957

    Article  CAS  PubMed  Google Scholar 

  97. Guarino M, Micheli P, Pallotti F, Giordano F (1999) Pathological relevance of epithelial and mesenchymal phenotype plasticity. Pathol Res Pract 195: 379–389

    CAS  PubMed  Google Scholar 

  98. Hay ED (1995) An overview of epithelio-mesenchymal transformation. Acta Anat (Basel) 154: 8–20

    CAS  PubMed  Google Scholar 

  99. Birchmeier W, Birchmeier C (1995) Epithelial-mesenchymal transitions in development and tumour progression. EXS 74: 1–15

    CAS  PubMed  Google Scholar 

  100. Kerr JF (2002) History of the events leading to the formulation of the apoptosis concept. Toxicology 181–182: 471–474

    PubMed  Google Scholar 

  101. De Vries H (1902) Mutation Theory. Translation by JB Farmer, AD Darbishire. 1910, Kegan Paul, Trench, Trübner & Co, London

    Google Scholar 

  102. Bateson W (1913) Problems of Genetics. Yale University Press, New Haven, CT, USA

    Google Scholar 

  103. Tyzzer EE (1916) Tumour immunology. J Cancer Res 1: 125–155

    CAS  Google Scholar 

  104. Morgan TH, Sturtevant AH, Muller HJ, Bridges CB (1915) The Mechanism of Mendelian Heredity. Constable, London

    Google Scholar 

  105. Lawley PD (1994) Historical origins of current concepts of carcinogenesis. Adv Cancer Res 65: 17–111

    CAS  PubMed  Google Scholar 

  106. Berenblum I, Shubik P (1949) An experimental study of the initiating stage of carcinogenesis, and a re-examination of the somatic cell mutation theory of cancer. Br J Cancer 3: 109–118

    CAS  Google Scholar 

  107. Berenblum I (1967) Cancer Research Today. Pergamon Press, New York

    Google Scholar 

  108. Burdette WJ (1955) The significance of mutation in relation to the origin of tumours: a review. Cancer Res 15: 201–226

    CAS  PubMed  Google Scholar 

  109. Earle WR (ed.) (1943) Production of malignancy in vitro. J Natl Cancer Instit 4: 131–248

    Google Scholar 

  110. Sanford KK (1965) Malignant transformation of cells in vitro. Int Rev Cytol 18: 249–311

    CAS  PubMed  Google Scholar 

  111. Hayflick L (1967) Oncogenesis in vitro. Nat Cancer Inst Monograph 26: 355–385

    CAS  Google Scholar 

  112. Huebner RJ, Todaro GJ (1969) Oncogenes of RNA tumour viruses as determinants of cancer. Proc Natl Acad Sci USA 64: 1087–1094

    CAS  PubMed  Google Scholar 

  113. Sporn MB, Roberts AB (1985) Autocrine growth factors and cancer. Nature 313: 745–747

    Article  CAS  PubMed  Google Scholar 

  114. Rozengurt E (1995) Polypeptide and neuropeptide growth factors: signalling pathways and role in cancer. In: M Peckham, H Pinedo, U Veronesi (eds): Oxford Textbook of Oncology, Oxford University Press, Oxford, 12–20

    Google Scholar 

  115. Moschos SJ, Mantzoros CS (2002) The role of the IGF system in cancer: from basic to clinical studies and clinical applications. Oncology 63: 317–332

    Article  CAS  PubMed  Google Scholar 

  116. Bignold LP (2004) Chaotic genomes make chaotic cells: the mutator phenotype theory of carcinogenesis applied to clinicopathological relationships of solid tumors. Cancer Invest 22: 338–343

    Article  CAS  PubMed  Google Scholar 

  117. Iversen OH (1995) Of mice and men: a critical reappraisal of the two-stage theory of carcinogenesis. Crit Rev Oncog 6: 3357–3405

    Google Scholar 

  118. McGee J O’D, Isacson PG, Wright NA (eds) (1992) Oxford Textbook of Pathology. vol. 1. Oxford University Press, Oxford 636

    Google Scholar 

  119. Rubin E, Farber JL (eds) (1992) Pathology. 2nd edition. Lippincott, Philadelphia, 144

    Google Scholar 

  120. Walter JB, Talbot IC (eds) (1996) General Pathology. Churchill Livingstone, Edinburgh, 530

    Google Scholar 

  121. Lockhart-Mummery JP (1934) The Origin of Tumours. J and A Churchill, London

    Google Scholar 

  122. Nichols EM (1969) Somatic variation and multiple neurofibromatosis. Hum Hered 19: 473–479

    Google Scholar 

  123. Comings DE (1973) A general theory of carcinogenesis. Proc Natl Acad Sci USA 70: 3324–3328

    CAS  PubMed  Google Scholar 

  124. Knudson AG (2000) Chasing the cancer demon. Annu Rev Genet 34: 1–19

    Article  CAS  PubMed  Google Scholar 

  125. Knudson AG (2001) Two hits (more or less) to cancer. Nature Rev Genet 2: 157–162

    Google Scholar 

  126. Bignold LP (2004) The cell-type-specificity of inherited predispositions to tumours: review and hypothesis. Cancer Letters 216: 127–146

    Article  CAS  PubMed  Google Scholar 

  127. Fearon ER, Vogelstein B (1990) A genetic model for colorectal tumourigenesis. Cell 61: 759–767

    Article  CAS  PubMed  Google Scholar 

  128. Vogelstein B Kinzler KW (1993) The multistep nature of cancer. Trends Genet 9: 138–141

    Article  CAS  PubMed  Google Scholar 

  129. Bodmer W (1997) The somatic evolution of cancer. J Roy Coll Physicians Lond 31: 82–89

    CAS  Google Scholar 

  130. Fearnhead NS, Wilding JL, Bodmer WF (2002) Genetics of colorectal cancer: hereditary aspects and overview of colorectal tumourigenesis. Br Med Bull 64: 27–43

    CAS  PubMed  Google Scholar 

  131. Miller EC, Miller JA (1981) Mechanisms of chemical carcinogenesis. Cancer 47(5 Suppl): 1055–1064

    CAS  PubMed  Google Scholar 

  132. Slaga TJ, O’Connell J, Rotstein J, Patskan G, Morris R, Aldaz CM, Conti CJ (1986) Critical genetic determinants and molecular events in multistage skin carcinogenesis. Symp Fundam Cancer Res 39: 31–44

    CAS  PubMed  Google Scholar 

  133. Pitot HC (1993) The molecular biology of carcinogenesis. Cancer 72(3 Suppl): 962–970

    CAS  PubMed  Google Scholar 

  134. Steen HB (2000) The origin of oncogenic mutations: where is the primary damage? Carcinogenesis 21: 1773–1776

    Article  CAS  PubMed  Google Scholar 

  135. Chu EH, Trosko JE, Chang CC (1977) Mutational approaches to the study of carcinogenesis. J Toxicol Environ Health 2: 1317–1334

    CAS  PubMed  Google Scholar 

  136. Fisher RA (1930) The Genetical Theory of Natural Selection. Clarendon Press, Oxford, UK

    Google Scholar 

  137. Nordling CE (1953) A new theory of the cancer-inducing mechanism. Br J Cancer 7: 68–72

    CAS  PubMed  Google Scholar 

  138. Ashley DJB (1969) The two “hit” and multiple “hit” theories of carcinogenesis. Br J Cancer 23:313–328

    CAS  PubMed  Google Scholar 

  139. Armitage P (1985) Multistage models of carcinogenesis. Environ Health Perspect 63: 195–201

    CAS  PubMed  Google Scholar 

  140. Day NE (1990) The Armitage-Doll multistage model of carcinogenesis. Stat Med 9: 677–679

    CAS  PubMed  Google Scholar 

  141. Slaga TJ, Budunova IV, Gimenez-Conti IB, Aldaz CM (1996) The mouse skin carcinogenesis model. J Investig Dermatol Symp Proc 1: 151–156

    CAS  PubMed  Google Scholar 

  142. Rowinsky EK, Donehower RC (2001) Antimicrotubule agents. In: BA Chabner, Longo DL (eds): Cancer Chemotherapy and Biotherapy: Principles and Practice. 3rd edn. Lippincott, Williams and Wilkins, Philadelphia, 329–372

    Google Scholar 

  143. Bignold LP (2003) Initiation of genetic instability and tumour formation: a review and hypothesis of a nongenotoxic mechanism. Cell Mol Life Sci 60: 1107–1117

    CAS  PubMed  Google Scholar 

  144. Cleaver JE (1968) Defective repair replication of DNA in xeroderma pigmentosum. Nature 218: 652–656

    CAS  PubMed  Google Scholar 

  145. Marsh DJ, Zori RT (2002) Genetic insights into familial cancers — update and recent discoveries. Cancer Letters 181: 125–164

    CAS  PubMed  Google Scholar 

  146. Mullis KB, Faloona FA (1987) Specific synthesis of DNA in vitro via a polymerase-catalyzed chain reaction. Methods Enzymol 155: 335–350

    CAS  PubMed  Google Scholar 

  147. Stoler DL, Chen N, Basik M, Kahlenberg MS, Rodriguez-Bigas MA, Petrelli NJ, Anderson GR (1999) The onset and extent of genomic instability in sporadic colorectal tumour progression. Proc Natl Acad Sci USA 96: 15121–15126

    Article  CAS  PubMed  Google Scholar 

  148. Loeb LA, Springgate CF, Battula N (1974) Errors in DNA replication as a basis of malignant changes. Cancer Res 34: 2311–2321

    CAS  PubMed  Google Scholar 

  149. Loeb LA (1996) Many mutations in cancers. Cancer Surv 28: 329–342

    CAS  PubMed  Google Scholar 

  150. Loeb KR, Loeb LA (2000) Significance of multiple mutations in cancer. Carcinogenesis 21: 379–385

    Article  CAS  PubMed  Google Scholar 

  151. Loeb LA (2001) A mutator phenotype in cancer. Cancer Res 61: 230–239

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Birkhäuser Verlag/Switzerland

About this chapter

Cite this chapter

Bignold, L.P., Coghlan, B.L.D., Jersmann, H.P.A. (2006). Cancer morphology, carcinogenesis and genetic instability: a background. In: Cancer: Cell Structures, Carcinogens and Genomic Instability. Experientia Supplementum, vol 96. Birkhäuser Basel. https://doi.org/10.1007/3-7643-7378-4_1

Download citation

Publish with us

Policies and ethics