Skip to main content

Sturm’s Theorems on Zero Sets in Nonlinear Parabolic Equations

  • Chapter
Sturm-Liouville Theory

Abstract

We present a survey on applications of Sturm’s theorems on zero sets for linear parabolic equations, established in 1836, to various problems including reaction-diffusion theory, curve shortening and mean curvature flows, symplectic geometry, etc. The first Sturm theorem, on nonincrease in time of the number of zeros of solutions to one-dimensional heat equations, is shown to play a crucial part in a variety of existence, uniqueness and asymptotic problems for a wide class of quasilinear and fully nonlinear equations of parabolic type. The survey covers a number of the results obtained in the last twenty-five years and establishes links with earlier ones and those in the ODE area.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. A.D. Aleksandrov, Certain estimates for the Dirichlet problem, Soviet Math. Dokl. 1 (1960), 1151–1154.

    Google Scholar 

  2. W. Allegretto, A comparison theorem for nonlinear operators, Ann. Scuola Norm. Sup. Pisa, Cl. Sci (4), 25 (1971), 41–46.

    Google Scholar 

  3. W. Allegretto, Sturm type theorems for solutions of elliptic nonlinear problems, Nonl. Differ. Equat. Appl. 7 (2000), 309–321.

    Google Scholar 

  4. W. Allegretto, Sturm Theorems for degenerate elliptic equations, Proc. Amer. Math. Soc. 129 (2001), 3031–3035.

    Google Scholar 

  5. S. Altschuler, S. Angenent and Y. Giga, Mean curvature flow through singularities for surfaces of rotation, J. Geom. Anal. 5 (1995), 293–358.

    Google Scholar 

  6. S.B. Angenent, The Morse-Smale property for a semi-linear parabolic equation, J. Differ. Equat. 62 (1986), 427–442.

    Google Scholar 

  7. S. Angenent, The zero set of a solution of a parabolic equation, J. reine angew. Math. 390 (1988), 79–96.

    Google Scholar 

  8. S. Angenent, Solutions of the one-dimensional porous medium equation are determined by their free boundary, J. London Math. Soc. (2) 42 (1990), 339–353.

    Google Scholar 

  9. S. Angenent, Parabolic equations for curves on surfaces. Part I. Curves with pintegrable curvature, Ann. Math. 132 (1990), 451–483.

    Google Scholar 

  10. S. Angenent, Parabolic equations for curves on surfaces. Part II. Intersections, blow-up and generalized solutions, Ann. Math. 133 (1991), 171–215.

    Google Scholar 

  11. S. Angenent, Inflection points, extatic points and curve shortening, In: Proceedings of the Conference on Hamiltonian Systems with 3 or More Degrees of Freedom, S’Agarro, Catalunia, Spain, 1995.

    Google Scholar 

  12. S.B. Angenent and B. Fiedler, The dynamics of rotating waves in scalar reaction diffusion equations, Trans. Amer. Math. Soc. 307 (1988), 545–568.

    Google Scholar 

  13. V.I. Arnold, On the characteristic class entering in quantization condition, Funct. Anal. Appl. 1 (1967), 1–14.

    Google Scholar 

  14. V.I. Arnold, The Sturm theorems and symplectic geometry, Funct. Anal. Appl. 19 (1985), 251–259.

    Google Scholar 

  15. V.I. Arnold, Topological Invariants of Plane Curves and Caustics, A.M.S. University Lecture Series 5, 1994.

    Google Scholar 

  16. V.I. Arnol’d, The geometry of spherical curves and the algebra of quaternions, Russian Math. Surveys 50 (1995), 3–68.

    Google Scholar 

  17. V.I. Arnold, Topological problems of the theory of wave propagation, Russian Math. Surveys 51 (1996), 1–47.

    Google Scholar 

  18. V.I. Arnold, Topological problems in wave propagation theory and topological economy principle in algebraic geometry, Third Lecture by V. Arnold at the Meeting in the Fields Institute Dedicated to His 60th Birthday, Fields Inst. Commun., 1997.

    Google Scholar 

  19. V.I. Arnold, Symplectic geometry and topology, J. Math. Phys. 41 (2000), 3307–3343.

    Google Scholar 

  20. F.V. Atkinson, Discrete and Continuous Boundary Problems, Acad. Press, New York/London, 1964.

    Google Scholar 

  21. S.N. Bernstein, The basis of a Chebyshev system, Izv. Akad. Nauk SSSR., Ser. Mat. 2 (1938), 499–504.

    Google Scholar 

  22. M.S. Birman and M.Z. Solomjak, Spectral Theory of Self-Adjoint Operators in Hilbert Space, D. Reidel Publ. Comp., Dordrecht/Tokyo, 1987.

    Google Scholar 

  23. J. Bochnak, M. Coste and M.-F. Roy, Real Algebraic Geometry, Springer-Verlag, Berlin/New York, 1998.

    Google Scholar 

  24. R. Bott, On the iteration of closed geodesics and the Sturm intersection theory, Comm. Pure Appl. Math. 70 (1959), 313–337.

    Google Scholar 

  25. P. Brunovský and B. Fiedler, Number of zeros on invariant manifolds in reaction-diffusion equations, Nonlinear Anal. TMA 10 (1986), 179–193.

    Google Scholar 

  26. P. Brunovský and B. Fiedler, Simplicity of zeros in scalar parabolic equations, J. Differ. Equat. 62 (1986), 237–241.

    Google Scholar 

  27. P. Brunovský and B. Fiedler, Connecting orbits in scalar reaction diffusion equations. II: The complete solution, J. Differ. Equat. 81 (1989), 106–135.

    Google Scholar 

  28. P. Brunovský, P. Polácik and B. Sandstede, Convergence in general periodic parabolic equations in one space dimension, Nonlinear Anal. TMA 18 (1992), 209–215.

    Google Scholar 

  29. T. Carleman, Sur un problème d’unicité pour le système d’équations aux dérivées partielles à deux variables indépendantes, Ark. Mat. Astr. Fys. 26B (1939), 1–9.

    Google Scholar 

  30. S.A. Chaplygin, A New Method of Approximate Integration of Differential Equations, GTTI, Moscow/Leningrad, 1932.

    Google Scholar 

  31. M. Chen, X.-Y. Chen and J.K. Hale, Structural stability for time-periodic one-dimensional parabolic equations, J. Differ. Equat. 96 (1992), 355–418.

    Google Scholar 

  32. X.-Y. Chen, A strong unique continuation theorem for parabolic equations, Math. Ann. 311 (1998), 603–630.

    Google Scholar 

  33. X.-Y. Chen and H. Matano, Convergence, asymptotic periodicity, and finite-point blow-up in one-dimensional semilinear parabolic equations, J. Differ. Equat. 78 (1989), 160–190.

    Google Scholar 

  34. X.-Y. Chen and P. Polácik, Asymptotic periodicity of positive solutions of reaction diffusion equations on a ball, J. reine angew. Math. 472 (1996), 17–51.

    Google Scholar 

  35. S.-N. Chow, K. Lu and J. Mallet-Pare, Floquet theory for parabolic differential equations, J. Differ. Equat. 109 (1993), 147–200.

    Google Scholar 

  36. S.-N. Chow, K. Lu and J. Mallet-Pare, Floquet bundles for scalar parabolic equations, Arch. Rational Mech. Anal. 129 (1995), 245–304.

    Google Scholar 

  37. R. Courant and D. Hilbert, Methods of Mathematical Physics, Vol. 1, Intersci. Publ., Inc., New York, 1953.

    Google Scholar 

  38. C. de la Vallée-Poussin, Sur l’équation différentielle linéaire du second ordre. Détermination d’une intégrale par deux valeurs assignées. Extension aux équations d’ordre n, J. Math. Pures Appl. 8 (1929), 125–144.

    Google Scholar 

  39. H.M. Edwards, A generalized Sturm theorem, Ann. Math. 80 (1964), 22–57.

    Google Scholar 

  40. Yu.V. Egorov, V.A. Galaktionov, V.A. Kondratiev and S.I. Pohozaev, Global solutions of higher-order semilinear parabolic equations in the supercritical range, Comptes Rendus Acad. Sci. Paris, Série I, 335 (2002), 805–810.

    Google Scholar 

  41. C.L. Epstein and M.I. Weinstein, A stable manifold theorem for the curve shortening equations, Comm. Pure Appl. Math. 40 (1987), 119–139.

    Google Scholar 

  42. L.C. Evans and J. Spruck, Motion of level sets by mean curvature. I, J. Differ. Geom. 33 (1991), 635–681.

    Google Scholar 

  43. E. Feireisl and P. Poláčik, Structure of periodic solutions and asymptotic behavior for time-periodic reaction-diffusion equations on ℝ, Adv. Differ. Equat. 5 (2000), 583–622.

    Google Scholar 

  44. B. Fiedler, Discrete Ljapunov functionals and ω-limit sets, Math. Model. Numer. Anal. 23 (1989), 415–431.

    Google Scholar 

  45. B. Fiedler and J. Mallet-Paret, A Poincaré-Bendixson theorem for scalar reaction diffusion equations, Arch. Rational Mech. Anal. 107 (1989), 325–345.

    Google Scholar 

  46. B. Fiedler and J. Mallet-Paret, Connections between Morse sets for delay-differential equations, J. reine angew. Math. 397 (1989), 23–41.

    Google Scholar 

  47. S. Filippas and R.V. Kohn, Refined asymptotics for the blow-up of u t − Δ u = up, Comm. Pure Appl. Math. 45 (1992), 821–869.

    Google Scholar 

  48. G. Floquet, Sur les équations différentielles linéaires à coefficients périodiques, Ann. Sci. École Norm. Sup. 12 (1883), 47–89.

    Google Scholar 

  49. G. Fusco and S.M. Verduyn Lunel, Order structures and the heat equation, J. Differ. Equat. 139 (1997), 104–145.

    Google Scholar 

  50. A. Gabriaelov and N. Vorobjov, Complexity of stratification of semi-Pfaffian sets, Discr. Comput. Geom. 14 (1995), 71–91.

    Google Scholar 

  51. M. Gage and R.S. Hamilton, The heat equation shrinking convex plane curves, J. Differ. Geom. 23 (1986), 69–96.

    Google Scholar 

  52. V.A. Galaktionov, On localization conditions for unbounded solutions of quasilinear parabolic equations, Soviet Math. Dokl. 25 (1982), 775–780.

    Google Scholar 

  53. V.A. Galaktionov, Geometric theory of one-dimensional nonlinear parabolic equations I. Singular interfaces, Adv. Differ. Equat. 7 (2002), 513–580.

    Google Scholar 

  54. V.A. Galaktionov, On a spectrum of blow-up patterns for a higher-order semilinear parabolic equation, Proc. Royal Soc. London A 457 (2001), 1–21.

    Google Scholar 

  55. V.A. Galaktionov, Sturmian nodal set analysis for higher-order parabolic equations and applications, Trans. Amer. Math. Soc., submitted.

    Google Scholar 

  56. V.A. Galaktionov, Geometric Sturmian Theory of Nonlinear Parabolic Equations, Chapman and Hall/CRC, Boca Raton, Florida, 2004.

    Google Scholar 

  57. V.A. Galaktionov and J.L. Vazquez, The problem of blow-up in nonlinear parabolic equations, Discr. Cont. Dyn. Syst. 8 (2002), 399–433.

    Google Scholar 

  58. V.A. Galaktionov and J.L. Vazquez, A Stability Technique for Evolution Partial Differential Equations. A Dynamical Systems Approach, Birkhdiuser, Boston/Berlin, 2003.

    Google Scholar 

  59. F.R. Gantmakher, Non-symmetric Kellogg kernels, Doklady Akad. Nauk SSSR 1 (1936), 3–5.

    Google Scholar 

  60. F.R. Gantmakher and M.G. Krein, Oscillation Matrices and Kernels and Small Vibrations of Mechanical Systems, Gostekhizdat (Izdat. Tekhn. Teor. Lit.), Moscow/Leningrad, 1950; English translation from the 1950 2nd Russian ed.: AEC-tr-4481, U.S. Atomic Energy Commission, Oak Ridge, Tenn., 1961.

    Google Scholar 

  61. A. Givental, Sturm theorem for hyperelliptic integrals, Leningrad J. of Math. 1 (1990), 1157–1163.

    Google Scholar 

  62. E.K. Godunova and V.I. Levin, Certain qualitative questions of heat conduction, USSR. Comp. Math. Math. Phys. 6 (1966), 212–220.

    Google Scholar 

  63. M.A. Grayson, Shortening embedded curves, Ann. Math. 129 (1989), 71–111.

    Google Scholar 

  64. J.K. Hale, Dynamics in parabolic equations — an example, In: Systems of Nonlinear Partial Differential Equations, J.M. Ball, ed., pp. 461–472, Reidel, Dordrecht, 1983.

    Google Scholar 

  65. D.B. Henry, Some infinite-dimensional Morse-Smale systems defined by parabolic partial differential equations, J. Differ. Equat. 59 (1985), 165–205.

    Google Scholar 

  66. M.A. Herrero and J.J.L. Velázquez, Blow-up behavior of one-dimensional semilinear parabolic equations, Ann. Inst. Henri Poincaré, Analyse non lineaire 10 (1993), 131–189.

    Google Scholar 

  67. P. Hess and P. Polácik, Symmetry and convergence properties for non-negative solutions of nonautonomous reaction-diffusion problems, Proc. Royal Soc. Edinburgh 124A (1994), 573–587.

    Google Scholar 

  68. E. Hille, Ordinary Differential Equations in the Complex Domain, Dover Publications, Mineola, New York, 1997.

    Google Scholar 

  69. D. Hinton, Sturm’s 1836 Oscillation Results. Evolution of the Theory, this volume.

    Google Scholar 

  70. G. Huisken, Flow by mean curvature of convex surfaces into spheres, J. Differ. Geom. 20 (1984), 237–266.

    Google Scholar 

  71. A. Hurwitz, Über die Fourierschen Konstanten integrierbarer Funktionen, Math. Ann. 57 (1903), 425–446.

    Google Scholar 

  72. Y. Ilýashenko and S. Yakovenko, Counting real zeros of analytic functions satisfying linear ordinary differential equations, J. Differ. Equat. 126 (1996), 87–105.

    Google Scholar 

  73. I.K. Ivanov, A relation between the number of changes of sign of the solution of the equations \(\partial [a(t,x)\partial u/\partial x]/\partial x - \partial u/\partial t = 0\) and the nature of its diminution, Godisnik Viss. Tehn. Ucebn. Zaved. Mat. 1 (1964), kn. 1, 107–116 (1965).

    Google Scholar 

  74. C.G.J. Jacobi, Vorlesungen iiber Dynamik, G. Reiner, Berlin, 1884.

    Google Scholar 

  75. J. Jones, Jr. and T. Mazumdar, On zeros of solutions of certain Emden-Fowler like differential equations in Hilbert space, Nonlinear Anal. TMA 12 (1988), 365–373.

    Google Scholar 

  76. S. Karlin, Total positivity, absorption probabilities and applications, Trans. Amer. Math. Soc. 111 (1964), 33–107.

    Google Scholar 

  77. O.D. Kellogg, The oscillation of functions of an orthogonal set, Amer. J. Math. 38 (1916), 1–5.

    Google Scholar 

  78. O.D. Kellogg, On the existence and closure of sets of characteristic functions, Math. Ann. 86 (1922), 14–17.

    Google Scholar 

  79. A.G. Khovanskii (A.G. Hovanskii), On a class of systems of transcendental equations, Soviet Math. Dokl. 22 (1980), 762–765.

    Google Scholar 

  80. A.G. Khovanskii, Fewnomials, AMS Transl. Math. Monogr. 88, Amer. Math. Soc., Providence, Rhode Island, 1991.

    Google Scholar 

  81. A. Kneser, Festschrift zum 70. Geburtstag von H. Weber, Leipzig, 1912, pp. 170–192.

    Google Scholar 

  82. A.N. Kolmogorov, I.G. Petrovskii and N.S. Piskunov, Study of the diffusion equation with growth of the quantity of matter and its application to a biological problem, Byull. Moskov. Gos. Univ., Sect. A, 1 (1937), 1–26. See [107], pp. 105–130 for an English translation.

    Google Scholar 

  83. M.G. Krein, Sur les functions de Green non-symétriques oscillatoires des opérateurs différentiels ordinaires, Doklady Akad. Nauk SSSR 25 (1939), 643–646.

    Google Scholar 

  84. K. Kunisch and G. Peichl, On the shape of the solutions of second-order parabolic differential equations, J. Differ. Equat. 75 (1988), 329–353.

    Google Scholar 

  85. E.M. Landis, A property of solutions of a parabolic equation, Soviet Math. Dokl. 7 (1966), 900–903.

    Google Scholar 

  86. S. Lang, Algebra, Addison-Wesley, Reading/Tokyo, 1984.

    Google Scholar 

  87. A.Yu. Levin, Non-oscillation of solutions of the equation \(x^{(n)} + p_1 (t)x^{(n - 1)} + \cdot \cdot \cdot p_n (t)x = 00\) , Russian Math. Surveys 24 (1969), 43–99.

    Google Scholar 

  88. V.B. Lidskii, Oscillatory theorems for a canonical system of differential equations, Doklady Acad. Nauk SSSR 102 (1955), 877–880.

    Google Scholar 

  89. J. Liouville, Démonstration d’un théorème dû à M. Sturm et relatif à une classes de functions transcendantes, J. Math. Pures Appl. 1 (1836), 269–277.

    Google Scholar 

  90. L. Lusternik and L. Schnirelman, Sur le problkme de trois géodésiques fermées sur les surfaces de genre O, Comptes Rendus Acad. Sci. Paris 189 (1929), 269–271.

    Google Scholar 

  91. A.M. Lyapunov, The General Problem of the Stability of Motion, Kharkov, 1892 (in Russian); Taylor & Francis, London, 1992. A. Liapunoff, Problème général de la stabilité du movement, Ann. Fac. Sciences de Toulouse, Second series 9 (1907), 203–469; Reprinted as Ann. of Math. Studies, No. 17, Princeton Univ. Press, 1947.

    Google Scholar 

  92. J. Mallet-Paret, Morse decomposition for delay-differential equations, J. Differ. Equat. 72 (1988), 270–315.

    Google Scholar 

  93. J. Mallet-Paret and H.L. Smith, The Poincaré-Bendixson theorem for monotone cyclic feedback systems, J. Dyn. Differ. Equat. 2 (1990), 367–421.

    Google Scholar 

  94. W.A. Markov, Über Polynome, die in einem gegebenen Intervalle moglichst wenig von Null abweichen, Math. Ann. 77 (1916), 213–258.

    Google Scholar 

  95. V.P. Maslov, Théorie des Perturbations et Méthodes Asymptotiques, Thesis, Moscow State Univ., 1965; Dunod, Paris, 1972.

    Google Scholar 

  96. H. Matano, Convergence of solutions of one-dimensional semilinear parabolic equations, J. Math. Kyoto Univ. (JMKYAZ) 18 (1978), 221–227.

    Google Scholar 

  97. H. Matano, Nonincrease of the lap-number of a solution for a one-dimensional semilinear parabolic equation, J. Fac. Sci. Univ. Tokyo, Sect. IA, Math. 29 (1982),401–441.

    Google Scholar 

  98. H. Matano, Asymptotic behavior of solutions of semilinear heat equations on S1, In: Nonl. Diff. Equat. Equil. States, Vol. II, J. Serrin, W.-M. Ni and L.A. Peletier, Eds, Springer, New York, 1988, pp. 139–162.

    Google Scholar 

  99. F. Merle and H. Zaag, Optimal estimates for blowup rate and behavior for nonlinear heat equations, Comm. Pure Appl. Math. 51 (1998), 139–196.

    Google Scholar 

  100. N. Mizoguchi and E. Yanagida, Critical exponents for the decay rate of solutions in a semilinear parabolic equation, Arch. Rat. Mech. Anal. 145 (1998), 331–342.

    Google Scholar 

  101. M. Morse, A generalization of the Sturm theorems in n space, Math. Ann. 103 (1930), 52–69.

    Google Scholar 

  102. M. Morse, The Calculus of Variation in the Large, AMS Colloquium Publications Vol. 18, New York, 1934.

    Google Scholar 

  103. S. Mukhopadyaya, New methods in the geometry of a plane arc I, Bull. Calcutta Math. Soc. 1 (1909), 31–37.

    Google Scholar 

  104. A.D. Myschkis, Lineare Differentialgleichungen mit nacheilendem Argument, Deutscher Verlag Wiss., Berlin, 1955.

    Google Scholar 

  105. K. Nickel, Gestaltaussagen über Lösungen parabolischer Differentialgleichungen, J. Reine Angew. Math. 211 (1962), 78–94.

    Google Scholar 

  106. K. Nickel, Einige Eigenschaften von Lösungen der Prandtlschen Grenzschicht-Differentialgleichungen, Arch. Rational Mech. Anal. 2 (1958), 1–31.

    Google Scholar 

  107. P. Pelcö, Dynamics of Curved Fronts, Acad. Press, New York, 1988.

    Google Scholar 

  108. M. Picone, Un teorema sulle soluzioni delle equazioni ellittiche autoaggiunte alle derivate parziali del second ordine, Atti Accad. Naz. Lincei Rend. 20 (1911), 213–219.

    Google Scholar 

  109. P. Poláčik, Transversal and nontransversal intersections of stable and unstable manifolds in reaction diffusion equations on symmetric domains, Differ. Integr. Equat. 7 (1994), 1527–1545.

    Google Scholar 

  110. P. Poláčik, Parabolic equations: asymptotic behavior and dynamics on invariant manifolds, Handbook of Dynamical Systems, Vol. 2, pp. 835–883, North-Holland, Amsterdam, 2002.

    Google Scholar 

  111. G. Pó1lya, On the mean-value theorem corresponding to a given linear homogeneous differential equation, Trans. Amer. Math. Soc. 24 (1924), 312–324.

    Google Scholar 

  112. G. Pó1lya, Qualitatives über Wärmeausgleich, Z. Angew. Math. Mech. 13 (1933),125–128.

    Google Scholar 

  113. C.-C. Poon, Unique continuation for parabolic equations, Comm. Part. Differ. Equat. 21 (1996), 521–539.

    Google Scholar 

  114. R.M. Redheffer and W. Walter, The total variation of solutions of parabolic differential equations and a maximum principle in unbounded domains, Math. Ann. 209 (1974), 57–67.

    Google Scholar 

  115. W.T. Reid, Sturmian Theory for Ordinary Differential Equations, Springer-Verlag, Berlin/New York, 1980.

    Google Scholar 

  116. A.A. Samarskii, V.A. Galaktionov, S.P. Kurdyumov and A.P. Mikhailov, Blow-up in Quasilinear Parabolic Equations, Nauka, Moscow, 1987; English transl., rev.: Walter de Gruyter, Berlin/New York, 1995.

    Google Scholar 

  117. G. Sapiro and A. Tannenbaum, An affine curve evolution, J. Funct. Anal. 119 (1994), 79–120.

    Google Scholar 

  118. D.H. Sattinger, On the total variation of solutions of parabolic equations, Math. Ann. 183 (1969), 78–92.

    Google Scholar 

  119. J.A. Sethian, Curvature and the evolution of fronts, Comm. Math. Phys. 101 (1985), 487–499.

    Google Scholar 

  120. W. Shen and Y. Yi, Asymptotic almost periodicity of scalar parabolic equations with almost periodic time dependence, J. Differ. Equat. 122 (1995), 373–397.

    Google Scholar 

  121. H.M. Soner and P.E. Souganidis, Singularities and uniqueness of cylindrically symmetric surfaces moving by mean curvature, Comm. Partial Differ. Equat. 18 (1993),859–894.

    Google Scholar 

  122. A.N. Stokes, Intersections of solutions of nonlinear parabolic equations, J. Math. Anal. Appl. 60 (1977), 721–727.

    Google Scholar 

  123. A.N. Stokes, Nonlinear diffusion waveshapes generated by possibly finite initial disturbances, J. Math. Anal. Appl. 61 (1977), 370–381.

    Google Scholar 

  124. C. Sturm, Mémoire sur la résolution des équations numériques, Mém. Savants Étrangers, Acad. Sci. Paris 6 (1835), 271–318.

    Google Scholar 

  125. C. Sturm, Mémoire sur les Équations différentielles linéaires du second ordre, J. Math. Pures Appl. 1 (1836), 106–186.

    Google Scholar 

  126. C. Sturm, Mémoire sur une classes d’Équations à différences partielles, J. Math. Pures Appl. 1 (1836), 373–444.

    Google Scholar 

  127. C.A. Swanson, Comparison and Oscillation Theory of Linear Differential Equations, Acad. Press, New York/London, 1968.

    Google Scholar 

  128. G. Szegö, Orthogonal Polynomials, Amer. Math. Soc., Providence, Rhode Island, 1975.

    Google Scholar 

  129. S.L. Tabachnikov, Around four vertices, Russian Math. Surveys 45 (1990), 229–230.

    Google Scholar 

  130. M. Tabata, A finite difference approach to the number of peaks of solutions for semilinear parabolic problems, J. Math. Soc. Japan 32 (1980), 171–191.

    Google Scholar 

  131. J.J.L. Velazquez, Estimates on (N−1)-dimensional Hausdorff measure of the blowup set for a semilinear heat equation, Indiana Univ. Math. J. 42 (1993), 445–476.

    Google Scholar 

  132. J.J. Velazquez, V.A. Galaktionov and M.A. Herrero, The space structure near a blow-up point for semilinear heat equations: a formal approach, Comput. Math. and Math. Phys. 31 (1991), 46–55.

    Google Scholar 

  133. W. Walter, Differential-and Integral-Ungleichungen, Springer Tracts in Natural Philosophy, Vol. 2, Springer, Berlin/New York, 1964.

    Google Scholar 

  134. W. Walter, Differential and Integral Inequalities, Springer, Berlin/New York, 1970.

    Google Scholar 

  135. T.I. Zelenyak, Stabilization of solutions of boundary value problems for a second order parabolic equation with one space variable, Differ. Equat. 4 (1968), 17–22.

    Google Scholar 

  136. N.F. Zhukovskii, Conditions of finiteness of integrals of the equation \(d^2 y/dx^2 + py = 0\) , Mat. Sbornik 3 (1892), 582–591.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Birkhäuser Verlag Basel/Switzerland

About this chapter

Cite this chapter

Galaktionov, V.A., Harwin, P.J. (2005). Sturm’s Theorems on Zero Sets in Nonlinear Parabolic Equations. In: Amrein, W.O., Hinz, A.M., Pearson, D.P. (eds) Sturm-Liouville Theory. Birkhäuser Basel. https://doi.org/10.1007/3-7643-7359-8_8

Download citation

Publish with us

Policies and ethics