Cannabinoids in neurodegeneration and neuroprotection

  • Javier Fernández-Ruiz
  • Sara González
  • Julián Romero
  • José Antonio Ramos
Part of the Milestones in Drug Therapy MDT book series (MDT)


Striatal Injury Perivascular Microglial Cell 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Guzmán M, Sánchez C, Galve-Roperh I (2001) Control of the cell survival/death decision by cannabinoids. J Mol Med 78: 613–625CrossRefPubMedGoogle Scholar
  2. 2.
    Maccarrone M, Finazzi-Agro A (2003) The endocannabinoid system, anandamide and the regulation of mammalian cell apoptosis. Cell Death Differ 10: 946–955CrossRefPubMedGoogle Scholar
  3. 3.
    De Petrocellis L, Melck D, Bisogno T, Di Marzo V (2000) Endocannabinoids and fatty acid amides in cancer, inflammation and related disorders. Chem Phys Lipids 108: 191–209CrossRefPubMedGoogle Scholar
  4. 4.
    Grundy RI, Rabuffeti M, Beltramo M (2001) Cannabinoids and neuroprotection. Mol Neurobiol 24: 29–52CrossRefPubMedGoogle Scholar
  5. 5.
    Mechoulam R, Panikashivili A, Shohami E (2002) Cannabinoids and brain injury: therapeutic implications. Trends Mol Med 8: 58–61CrossRefPubMedGoogle Scholar
  6. 6.
    Grundy RI (2002) The therapeutic potential of the cannabinoids in neuroprotection. Expert Opin Investig Drugs 11: 1–10CrossRefPubMedGoogle Scholar
  7. 7.
    Fernández-Ruiz JJ, Lastres-Becker I, Cabranes A, González S, Ramos JA (2002) Endocannabinoids and basal ganglia functionality. Prost Leukot Essent Fatty Acids 66: 263–273Google Scholar
  8. 8.
    Hansen HS, Moesgaard B, Petersen G, Hansen HH (2002) Putative neuroprotective actions of N-acyl-ethanolamines. Pharmacol Ther 95: 119–126CrossRefPubMedGoogle Scholar
  9. 9.
    van der Stelt M, Veldhuis WB, Maccarrone M, Bar PR, Nicolay K, Veldink GA, Di Marzo V, Vliegenthart JF (2002) Acute neuronal injury, excitotoxicity, and the endocannabinoid system. Mol Neurobiol 26: 317–346CrossRefPubMedGoogle Scholar
  10. 10.
    van der Stelt M, Veldhuis WB, van Haaften GW, Fezza F, Bisogno T, Bär PR, Veldink GA, Vliegenthart JF, Di Marzo V, Nicolay K (2001) Exogenous anandamide protects rat brain against acute neuronal injury in vivo. J Neurosci 21: 8765–8771PubMedGoogle Scholar
  11. 11.
    Hansen HS, Moesgaard B, Hansen HH, Schousboe A, Petersen G (1999) Formation of N-acyl-phosphatidylethanolamine and N-acylethanolamine (including anandamide) during glutamate-induced neurotoxicity. Lipids 34: S327–S330PubMedGoogle Scholar
  12. 12.
    Hansen HH, Schmid PC, Bittigau P, Lastres-Becker I, Berrendero F, Manzanares J, Ikonomidou C, Schmid HH, Fernandez-Ruiz JJ, Hansen HS (2001) Anandamide, but not 2-arachidonoylglycerol, accumulates during in vivo neurodegeneration. J Neurochem 78: 1415–1427CrossRefPubMedGoogle Scholar
  13. 13.
    Marsicano G, Goodenough S, Monory K, Hermann H, Eder M, Cannich A, Azad SC, Cascio MG, Gutierrez SO, van der Stelt M et al. (2003) CB1 cannabinoid receptors and on-demand defense against excitotoxicity. Science 302: 84–88CrossRefPubMedGoogle Scholar
  14. 14.
    Gubellini P, Picconi B, Bari M, Battista N, Calabresi P, Centonze D, Bernardi G, Finazzi-Agrò A, Maccarrone M (2002) Experimental parkinsonism alters endocannabinoid degradation: implications for striatal glutamatergic transmission. J Neurosci 22: 6900–6907PubMedGoogle Scholar
  15. 15.
    Panikashvili D, Simeonidou C, Ben-Shabat S, Hanuš L, Breuer A, Mechoulam R, Shohami E (2001) An endogenous cannabinoid (2-AG) is neuroprotective after brain injury. Nature 413: 527–531CrossRefPubMedGoogle Scholar
  16. 16.
    Schabitz WR, Giuffrida A, Berger C, Aschoff A, Schwaninger M, Schwab S, Piomelli D (2002) Release of fatty acid amides in a patient with hemispheric stroke: a microdialysis study. Stroke 33: 2112–2124CrossRefPubMedGoogle Scholar
  17. 17.
    Jin KL, Mao XO, Goldsmith PC, Greenberg DA (2000) CB1 cannabinoid receptor induction in experimental stroke. Ann Neurol 48: 257–261CrossRefPubMedGoogle Scholar
  18. 18.
    Benito C, Nuñez E, Tolon RM, Carrier EJ, Rabano A, Hillard CJ, Romero J (2003) Cannabinoid CB2 receptors and fatty acid amide hydrolase are selectively overexpressed in neuritic plaque-associated glia in Alzheimer’s disease brains. J Neurosci 23: 11136–11141PubMedGoogle Scholar
  19. 19.
    Aroyo I, González S, Nuñez E, Lastres-Becker I, Sagredo O, Mechoulam R, Romero J, Ramos JA, Brouillet E, Fernández-Ruiz J (2005) Involvement of CB2 receptors in the neuroprotective effects of cannabinoids in rats with striatal atrophy induced by local application of malonate, an experimental model of Huntington’s disease. J Neurosci; submittedGoogle Scholar
  20. 20.
    Sánchez C, Galve-Roperh I, Canova C, Brachet P, Guzman M (1998) D9-tetrahydrocannabinol induces apoptosis in C6 glioma cells. FEBS Lett 436: 6–10CrossRefPubMedGoogle Scholar
  21. 21.
    Galve-Roperh I, Sanchez C, Cortes ML, del Pulgar TG, Izquierdo M, Guzman M (2000) Anti-tumoral action of cannabinoids: involvement of sustained ceramide accumulation and extra-cellular signal-regulated kinase activation. Nat Med 6: 313–319CrossRefPubMedGoogle Scholar
  22. 22.
    Blázquez C, Casanova ML, Planas A, Del Pulgar TG, Villanueva C, Fernandez-Acenero MJ, Aragones J, Huffman JW, Jorcano JL, Guzman M (2003) Inhibition of tumor angiogenesis by cannabinoids. FASEB J 17: 529–531PubMedGoogle Scholar
  23. 23.
    Guzmán M, Sanchez C (1999) Effects of cannabinoids on energy metabolism. Life Sci 65: 657–664CrossRefPubMedGoogle Scholar
  24. 24.
    Witting A, Stella N (2005) Cannabinoid signaling in glial cells in health and disease. Curr Neuropharmacol; in pressGoogle Scholar
  25. 25.
    Fowler CJ (2003) Plant-derived, synthetic and endogenous cannabinoids as neuroprotective agents. Non-psychoactive cannabinoids, ‘entourage’ compounds and inhibitors of N-acyl ethanolamine breakdown as therapeutic strategies to avoid pyschotropic effects. Brain Res Rev 41: 26–43CrossRefPubMedGoogle Scholar
  26. 26.
    Doble A (1999) The role of excitotoxicity in neurodegenerative disease: implications for therapy. Pharmacol Ther 81: 163–221CrossRefPubMedGoogle Scholar
  27. 27.
    Romero J, Lastres-Becker I, de Miguel R, Bernándero F, Ramos JA, Fernindez-Ruiz JJ (2002) The endogenous cannabinoid system and the basal ganglia: biochemical, pharmacological and therapeutic aspects. Pharmacol Ther 95: 137–152CrossRefPubMedGoogle Scholar
  28. 28.
    Shen M, Thayer SA (1998) Cannabinoid receptor agonists protect cultured rat hippocampal neurons from excitotoxicity. Mol Pharmacol 54: 459–462PubMedGoogle Scholar
  29. 29.
    Abood ME, Rizvi G, Sallapudi N, McAllister SD (2001) Activation of the CB1 cannabinoid receptor protects cultured mouse spinal neurons against excitotoxicity. Neurosci Lett 309: 197–201CrossRefPubMedGoogle Scholar
  30. 30.
    Nagayama T, Sinor AD, Simon RP, Chen J, Graham SH, Jin KL, Greenberg DA (1999) Cannabinoids and neuroprotection in global and focal cerebral ischemia and in neuronal cultures. J Neurosci 19: 2987–2995PubMedGoogle Scholar
  31. 31.
    Schlicker E, Kathmann M (2001) Modulation of transmitter release via presynaptic cannabinoid receptors. Trends Pharmacol Sci 22: 565–572CrossRefPubMedGoogle Scholar
  32. 32.
    Lastres-Becker I, Bizat N, Boyer F, Hantraye P, Brouillet E, Fernández-Ruiz J (2003) Effects of cannabinoids in the rat model of Huntington’s disease generated by an intrastriatal injection of malonate. Neuroreport 14: 813–816CrossRefPubMedGoogle Scholar
  33. 33.
    Hansen HH, Azcoitia I, Pons S, Romero J, Garcia-Segura LM, Ramos JA, Hansen HS, Fernandez-Ruiz J (2002) Blockade of cannabinoid CB1 receptor function protects against in vivo disseminating brain damage following NMDA-induced excitotoxicity. J Neurochem 82: 154–158CrossRefPubMedGoogle Scholar
  34. 34.
    Shohami E, Mechoulam R (2000) A non-psychotropic cannabinoid with neuroprotective properties. Drug Dev Res 50: 211–215CrossRefGoogle Scholar
  35. 35.
    Nadler V, Mechoulam R, Sokolovsky M (1993) Blockade of 45Ca2+ influx through the N-methyl-D-aspartate receptor ion channel by the non-psychoactive cannabinoid HU-211. Brain Res 622: 79–85CrossRefPubMedGoogle Scholar
  36. 36.
    Nadler V, Biegon A, Beit-Yannai E, Adamchik J, Shohami E (1995) 45Ca accumulation in rat brain after closed head injury; attenuation by the novel neuroprotective agent HU-211. Brain Res 685: 1–11CrossRefPubMedGoogle Scholar
  37. 37.
    Eshhar N, Striem S, Kohen R, Tirosh O, Biegon A (1995) Neuroprotective and antioxidant activities of HU-211, a novel NMDA receptor antagonist. Eur J Pharmacol 283: 19–29CrossRefPubMedGoogle Scholar
  38. 38.
    Hampson AJ, Bornheim LM, Scanziani M, Yost CS, Gray AT, Hansen BM, Leonoudakis DJ, Bickler PE (1998) Dual effects of anandamide on NMDA receptor-mediated responses and neurotransmission. J Neurochem 70: 671–676PubMedGoogle Scholar
  39. 39.
    Battaglia G, Bruno V, Pisani A, Centonze D, Catania MV, Calabresi P, Nicoletti F (2001) Selective blockade of type-1 metabotropic glutamate receptors induces neuroprotection by enhancing gabaergic transmission. Mol Cell Neurosci 17: 1071–1083CrossRefPubMedGoogle Scholar
  40. 40.
    Maneuf YP, Nash JE, Croosman AR, Brotchie JM (1996) Activation of the cannabinoid receptor by D9-THC reduces GABA uptake in the globus pallidus. Eur J Pharmacol 308: 161–164CrossRefPubMedGoogle Scholar
  41. 41.
    Romero J, de Miguel R, Ramos JA, Fernández-Ruiz J (1998) The activation of cannabinoid receptors in striatonigral neurons inhibited GABA uptake. Life Sci 62: 351–363CrossRefPubMedGoogle Scholar
  42. 42.
    Saji M, Blau AD, Volpe BT (1996) Prevention of transneuronal degeneration of neurons in the substantial nigra reticulata by ablation of the subthalamic nucleus. Exp Neurol 141: 120–129CrossRefPubMedGoogle Scholar
  43. 43.
    Mackie K, Hille B (1992) Cannabinoids inhibit N-type calcium channels in neuroblastoma-glioma cells. Proc Natl Acad Sci USA 89: 3825–3829PubMedGoogle Scholar
  44. 44.
    Mackie K, Lai Y, Westenbroek R, Mitchell R (1995) Cannabinoids activate an inwardly rectifying potassium conductance and inhibit Q-type calcium currents in AtT20 cells transfected with rat brain cannabinoid receptor. J Neurosci 15: 6552–6561PubMedGoogle Scholar
  45. 45.
    Pan X, Ikeda SR, Lewis DL (1996) Rat brain cannabinoid receptor modulates N-type Ca2+ channels in a neuronal expression system. Mol Pharmacol 49: 707–714PubMedGoogle Scholar
  46. 46.
    Gebremedhin D, Lange AR, Campbell WB, Hillard CJ, Harder DR (1999) Cannabinoid CB1 receptor of cat cerebral arterial muscle functions to inhibit L-type Ca2+ channel current. Am J Physiol Heart Circ Physiol 276: H2085–H2093Google Scholar
  47. 47.
    Chemin J, Monteil A, Perez-Reyes E, Nargeot J, Lory P (2001) Direct inhibition of T-type calcium channels by the endogenous cannabinoid anandamide. EMBO J 20: 7033–7040CrossRefPubMedGoogle Scholar
  48. 48.
    Deadwyler SA, Hampson RE, Bennett BA, Edwards TA, Mu J, Pacheco MA, Ward SJ, Childers SR (1993) Cannabinoids modulate potassium current in cultured hippocampal neurons. Recept Channel 1:121–134Google Scholar
  49. 49.
    McAllister SD, Griffin G, Satin LS, Abood ME (1999) Cannabinoid receptors can activate and inhibit G protein-coupled inwardly rectifying potassium channels in a xenopus oocyte expression system. J Pharmacol Exp Ther 291: 618–626PubMedGoogle Scholar
  50. 50.
    van der Stelt M, Veldhuis WB, Bar PR, Veldink GA, Vliegenthart JF, Nicolay K (2001) Neuroprotection by D9-tetrahydrocannabinol, the main active compound in marijuana, against ouabain-induced in vivo excitotoxicity. J Neurosci 21: 6475–6579PubMedGoogle Scholar
  51. 51.
    Hampson AJ, Grimaldi M (2001) Cannabinoid receptor activation and elevated cyclic AMP reduce glutamate neurotoxicity. Eur JNeurosci 13: 1529–1536CrossRefGoogle Scholar
  52. 52.
    Pong K (2003) Oxidative stress in neurodegenerative diseases: therapeutic implications for superoxide dismutase mimetics. Expert Opin Biol Ther 3: 127–139CrossRefPubMedGoogle Scholar
  53. 53.
    Klein JA, Ackerman SL (2003) Oxidative stress, cell cycle, and neurodegeneration. J Clin Invest 111:785–793CrossRefPubMedGoogle Scholar
  54. 54.
    Chan PH (2001) Reactive oxygen radicals in signaling and damage in the ischemic brain. J Cereb Blood Flow Metab 21: 2–14CrossRefPubMedGoogle Scholar
  55. 55.
    Marsicano G, Moosmann B, Hermann H, Lutz B, Behl C (2002) Neuroprotective properties of cannabinoids against oxidative stress: role of the cannabinoid receptor CB1. J Neurochem 80:448–456CrossRefPubMedGoogle Scholar
  56. 56.
    Hampson AJ, Grimaldi M, Axelrod J, Wink D (1998) Cannabidiol and (−)D9-tetrahydrocannabinol are neuroprotective antioxidants. Proc Natl Acad Sci USA 95: 8268–8273CrossRefPubMedGoogle Scholar
  57. 57.
    Chen Y, Buck J (2000) Cannabinoids protect cells from oxidative cell death: a receptor-independent mechanism. J Pharmacol Exp Ther 293: 807–812PubMedGoogle Scholar
  58. 58.
    Belayev L, Bar-Joseph A, Adamchik J, Biegon A (1995) HU-211, a nonpsychotropic cannabinoid, improves neurological signs and reduces brain damage after severe forebrain ischemia in rats. Mol Chem Neuropathol 25: 19–33PubMedGoogle Scholar
  59. 59.
    Braida D, Pegorini S, Arcidiacono MV, Consalez GG, Croci L, Sala M (2003) Post-ischemic treatment with cannabidiol prevents electroencephalographic flattening, hyperlocomotion and neuronal injury in gerbils. Neurosci Lett 346: 61–64CrossRefPubMedGoogle Scholar
  60. 60.
    Malfait AM, Gallily R, Sumariwalla PF, Malik AS, Andreakos E, Mechoulam R, Feldmann M (2000) The nonpsychoactive cannabis constituent cannabidiol is an oral anti-arthritic therapeutic in murine collagen-induced arthritis. Proc Natl Acad Sci USA 97: 9561–9566CrossRefPubMedGoogle Scholar
  61. 61.
    Adams IB, Martin BR (1996) Cannabis: pharmacology and toxicology in animals and humans. Addiction 91: 1585–1614CrossRefPubMedGoogle Scholar
  62. 62.
    Bisogno T, Hanuš L, De Petrocellis L, Tchilibon S, Ponde DE, Brandi I, Moriello AS, Davis JB, Mechoulam R, Di Marzo V (2001) Molecular targets for cannabidiol and its synthetic analogues: effects on vanilloid VR1 receptors and on the cellular uptake and enzymatic hydrolysis of anandamide. Brit JPharmacol 134: 845–852CrossRefGoogle Scholar
  63. 63.
    Mechoulam R, Parker LA, Gallily R (2002) Cannabidiol: an overview of some pharmacological aspects. J Clin Pharmacol 42: 11S–19SPubMedGoogle Scholar
  64. 64.
    Lastres-Becker I, Molina-Holgado F, Ramos JA, Mechoulam R, Fernández-Ruiz J (2005) Cannabinoids provide neuroprotection against 6-hydroxydopamine toxicity in vivo and in vitro: Relevance to Parkinson’s disease. Neurobiol Dis; in pressGoogle Scholar
  65. 65.
    Lastres-Becker I, Bizat N, Boyer F, Hantraye P, Fernández-Ruiz JJ, Brouillet E (2004) Potential involvement of cannabinoid receptors in 3-nitropropionic acid toxicity in vivo: implication for Huntington’s disease. Neuroreport 15: 2375–2379CrossRefPubMedGoogle Scholar
  66. 66.
    Reddy PH, Williams M, Tagle DA (1999) Recent advances in understanding the pathogenesis of Huntington’s disease. Trends Neurosci 22: 248–255CrossRefPubMedGoogle Scholar
  67. 67.
    Liu B, Hong JS (2003) Role of microglia in inflammation-mediated neurodegenerative diseases: mechanisms and strategies for therapeutic intervention. J Pharmacol Exp Ther 304: 1–7CrossRefPubMedGoogle Scholar
  68. 68.
    Walter L, Stella N (2004) Cannabinoids and neuroinflammation. Br J Pharmacol 141: 775–785CrossRefPubMedGoogle Scholar
  69. 69.
    Aloisi F (1999) The role of microglia and astrocytes in CNS immune surveillance and immunopathology. Adv Exp Med Biol 468: 123–133PubMedGoogle Scholar
  70. 70.
    ladecola C, Alexander M (2001) Cerebral ischemia and inflammation. Curr Opin Neurol 14: 89–94CrossRefPubMedGoogle Scholar
  71. 71.
    Dusart I, Schwab ME (1994) Secondary cell death and the inflammatory reaction after dorsal hemisection of the rat spinal cord. Eur J Neurosci 6: 712–724PubMedGoogle Scholar
  72. 72.
    McGeer PL, Yasojima K, McGeer EG (2001) Inflammation in Parkinson’s disease. Adv Neurol 86: 83–89PubMedGoogle Scholar
  73. 73.
    Sapp E, Kegel KB, Aronin N, Hashikawa T, Uchiyama Y, Tohyama K, Bhide PG, Vonsattel JP, DiFiglia M (2001) Early and progressive accumulation of reactive microglia in the Huntington disease brain. J Neuropathol Exp Neurol 60: 161–172PubMedGoogle Scholar
  74. 74.
    McGeer PL, Rogers J (1992) Anti-inflammatory agents as a therapeutic approach to Alzheimer’s disease. Neurology 42: 447–449PubMedGoogle Scholar
  75. 75.
    Eikelenboom P, Bate C, Van Gool WA, Hoozemans JJ, Rozemuller JM, Veerhuis R, Williams A (2002) Neuroinflammation in Alzheimer’s disease and prion disease. Glia 40: 232–239CrossRefPubMedGoogle Scholar
  76. 76.
    Baker D, Pryce G (2003) The therapeutic potential of cannabis in multiple sclerosis. Expert Opin Investig Drugs 12: 561–567CrossRefPubMedGoogle Scholar
  77. 77.
    Gómez Del Pulgar T, De Ceballos ML, Guzman M, Velasco G (2002) Cannabinoids protect astrocytes from ceramide-induced apoptosis through the phosphatidylinositol 3-kinase/protein kinase B pathway. J Biol Chem 277: 36527–36533CrossRefPubMedGoogle Scholar
  78. 78.
    Molina-Holgado E, Vela JM, Arevalo-Martin A, Almazan G, Molina-Holgado F, Borrell J, Guaza C (2002) Cannabinoids promote oligodendrocyte progenitor survival: involvement of cannabinoid receptors and phosphatidylinositol-3 kinase/Akt signaling. J Neurosci 22: 9742–9753PubMedGoogle Scholar
  79. 79.
    Smith SR, Terminelli C, Denhardt G (2000) Effects of cannabinoid receptor agonist and antagonist ligands on production of inflammatory cytokines and anti-inflammatory interleukin-10 in endotoxemic mice. J Pharmacol Exp Ther 293: 136–150PubMedGoogle Scholar
  80. 80.
    Klein TW, Lane B, Newton CA, Friedman H (2000) The cannabinoid system and cytokine network. Proc Soc Exp Biol Med 225: 1–8CrossRefPubMedGoogle Scholar
  81. 81.
    Puffenbarger RA, Boothe AC, Cabral GA (2000) Cannabinoids inhibit LPS-inducible cytokine mRNA expression in rat microglial cells. Glia 29: 58–69CrossRefPubMedGoogle Scholar
  82. 82.
    Waksman Y, Olson JM, Carlisle SJ, Cabral GA (1999) The central cannabinoid receptor (CB1) mediates inhibition of nitric oxide production by rat microglial cells. J Pharmacol Exp Ther 288: 1357–1366PubMedGoogle Scholar
  83. 83.
    Molina-Holgado F, Lledo A, Guaza C (1997) Anandamide suppresses nitric oxide and TNF-alpha responses to Theiler’s virus or endotoxin in astrocytes. Neuroreport 8: 1929–1933PubMedGoogle Scholar
  84. 84.
    Hillard CJ, Muthian S, Kearn CS (1999) Effects of CB(1) cannabinoid receptor activation on cerebellar granule cell nitric oxide synthase activity. FEBS Lett 459: 277–281CrossRefPubMedGoogle Scholar
  85. 85.
    Coffey RG, Snella E, Johnson K, Pross S (1996) Inhibition of macrophage nitric oxide production by tetrahydrocannabinol in vivo and in vitro. Int J Immunopharmacol 18: 749–752CrossRefPubMedGoogle Scholar
  86. 86.
    Polazzi E, Gianni T, Contestabile A (2001) Microglial cells protect cerebellar granule neurons from apoptosis: evidence for reciprocal signaling. Glia 36: 271–280CrossRefPubMedGoogle Scholar
  87. 87.
    Molina-Holgado F, Pinteaux E, Moore JD, Molina-Holgado E, Guaza C, Gibson RM, Rothwell NJ (2003) Endogenous interleukin-1 receptor antagonist mediates anti-inflammatory and neuro-protective actions of cannabinoids in neurons and glia. J Neurosci 23: 6470–6474PubMedGoogle Scholar
  88. 88.
    Skaper SD, Buriani A, Dal Toso R, Petrelli L, Romanello S, Facci L, Leon A (1996) The ALIAmide palmitoylethanolamide and cannabinoids, but not anandamide, are protective in a delayed postglutamate paradigm of excitotoxic death in cerebellar granule neurons. Proc Natl Acad Sci USA 93: 3984–3989CrossRefPubMedGoogle Scholar
  89. 89.
    Sánchez C, de Ceballos ML, del Pulgar TG, Rueda D, Corbacho C, Velasco G, Galve-Roperh I, Huffman JW, Ramon y Cajal S, Guzman M (2001) Inhibition of glioma growth in vivo by selective activation of the CB2 cannabinoid receptor. Cancer Res 61: 5784–5789PubMedGoogle Scholar
  90. 90.
    Nuñez E, Benito C, Pazos MR, Barbachano A, Fajardo O, González S, Tolón RM, Romero J (2004) Cannabinoid CB2 receptors are expressed by perivascular microglial cells in the human brain: an immunohistochemical study. Synapse 53: 208–213CrossRefPubMedGoogle Scholar
  91. 91.
    Benveniste EN, Nguyen VT, O’Keefe GM (2001) Immunological aspects of microglia: relevance to Alzheimer’s disease. Neurochem Int 39: 381–391CrossRefPubMedGoogle Scholar
  92. 92.
    Walter L, Franklin A, Witting A, Wade C, Xie Y, Kunos G, Mackie K, Stella N (2003) Nonpsychotropic cannabinoid receptors regulate microglial cell migration. J Neurosci 23: 1398–1405PubMedGoogle Scholar
  93. 93.
    Carrier EJ, Kearn CS, Barkmeier AJ, Breese NM, Yang W, Nithipatikom K, Pfister SL, Campbell WB, Hillard CJ (2004) Cultured rat microglial cells synthesize the endocannabinoid 2-arachi-donylglycerol, which increases proliferation via a CB2 receptor-dependent mechanism. Mol Pharmacol 65: 999–1007CrossRefPubMedGoogle Scholar
  94. 94.
    Giulian D (1999) Microglia and the immune pathology of Alzheimer disease. Am J Hum Genet 65: 13–18CrossRefPubMedGoogle Scholar
  95. 95.
    Rubanyi GM, Polokoff MA (1994) Endothelins: molecular biology, biochemistry, pharmacology, physiology, and pathophysiology. Pharmacol Rev 46: 325–415PubMedGoogle Scholar
  96. 96.
    Schinelli S (2002) The brain endothelin system as potential target for brain-related pathologies. Curr Drug Targets CNS Neurol Disord 1: 543–553CrossRefPubMedGoogle Scholar
  97. 97.
    Wagner JA, Varga K, Kunos G (1998) Cardiovascular actions of cannabinoids and their generation during shock. J Mol Med 76: 824–836CrossRefPubMedGoogle Scholar
  98. 98.
    Randall MD, Harris D, Kendall DA, Ralevic V (2002) Cardiovascular effects of cannabinoids. Pharmacol Ther 95: 191–202CrossRefPubMedGoogle Scholar
  99. 99.
    Mechoulam R, Spatz M, Shohami E (2002) Endocannabinoids and neuroprotection. Sci STKE 129/RE5Google Scholar
  100. 100.
    Chen Y, McCarron RM, Ohara Y, Bembry J, Azzam N, Lenz FA, Shohami E, Mechoulam R, Spatz M (2000) Human brain capillary endothelium: 2-arachidonoglycerol (endocannabinoid) interacts with endothelin-1. Circ Res 87: 323–327PubMedGoogle Scholar
  101. 101.
    Hillard CJ (2000) Endocannabinoids and vascular function. J Pharmacol Exp Ther 294: 27–32PubMedGoogle Scholar
  102. 102.
    Graham DI, McIntosh TK, Maxwell WL, Nicoll JA (2000) Recent advances in neurotrauma. J Neuropathol Exp Neurol 59: 641–651PubMedGoogle Scholar
  103. 103.
    Janardhan V, Qureshi AI (2004) Mechanisms of ischemic brain injury. Curr Cardiol Rep 6: 117–123PubMedGoogle Scholar
  104. 104.
    Alexi T, Borlongan CV, Faull RL, Williams CE, Clark RG, Gluckman PD, Hughes PE (2000) Neuroprotective strategies for basal ganglia degeneration: Parkinson’s and Huntington’s disease. Prog Neurobiol 60: 409–470CrossRefPubMedGoogle Scholar
  105. 105.
    Moosmann B, Behl C (2002) Antioxidants as treatment for neurodegenerative disorders. Expert Opin Invest Drugs 11: 1407–1435CrossRefGoogle Scholar
  106. 106.
    Rodnitzky RL (1999) Can calcium antagonists provide a neuroprotective effect in Parkinson’s disease? Drugs 57: 845–849PubMedGoogle Scholar
  107. 107.
    Galea E, Heneka MT, Dello Russo C, Feinstein DL (2003) Intrinsic regulation of brain inflammatory responses. Cell Mol Neurobiol 23: 625–635CrossRefPubMedGoogle Scholar
  108. 108.
    Gagliardi RJ (2000) Neuroprotection, excitotoxicity and NMDA antagonists. Arq Neuropsiquiatr 58: 583–588PubMedGoogle Scholar
  109. 109.
    Louw DF, Yang FW, Sutherland GR (2000) The effect of D9-tetrahydrocannabinol on forebrain ischemia in rat. Brain Res 857: 183–187CrossRefPubMedGoogle Scholar
  110. 110.
    Mauler F, Mittendorf J, Horvath E, De Vry J (2002) Characterization of the diarylether sulfonylester (−)-(R)-3-(2-hydroxymethylindanyl-4-oxy)phenyl-4,4,4-trifluoro-l-sulfonate (BAY 38–7271) as a potent cannabinoid receptor agonist with neuroprotective properties. J Pharmacol Exp Ther 302: 359–368CrossRefPubMedGoogle Scholar
  111. 111.
    Sinor AD, Irvin SM, Greenberg DA (2000) Endocannabinoids protect cerebral cortical neurons from in vitro ischemia in rats. Neurosci Lett 278: 157–160CrossRefPubMedGoogle Scholar
  112. 112.
    Ben-Shabat S, Fride E, Sheskin T, Tamiri T, Rhee MH, Vogel Z, Bisogno T, De Petrocellis L, Di Marzo V, Mechoulam R (1998) An entourage effect: inactive endogenous fatty acid glycerol esters enhance 2-arachidonoyl-glycerol cannabinoid activity. Eur JPharmacol 353: 23–31CrossRefGoogle Scholar
  113. 113.
    Parmentier-Batteur S, Jin K, Mao XO, Xie L, Greenberg DA (2002) Increased severity of stroke in CB1 cannabinoid receptor knock-out mice. J Neurosci 22: 9771–9775PubMedGoogle Scholar
  114. 114.
    Knoller N, Levi L, Shoshan I, Reichenthal E, Razon N, Rappaport ZH, Biegon A (2002) Dexanabinol (HU-211) in the treatment of severe closed head injury: a randomized, placebo-controlled, phase II clinical trial. Crit Care Med 30: 548–554CrossRefPubMedGoogle Scholar
  115. 115.
    Berardelli A, Noth J, Thompson PD, Bollen EL, Curra A, Deuschl G, van Dijk JG, Topper R, Schwartz M, Roos RA (1999) Pathophysiology of chorea and bradykinesia in Huntington’s disease. Mov Disord 14: 398–403CrossRefPubMedGoogle Scholar
  116. 116.
    Cattaneo E, Rigamonti D, Goffredo D, Zuccato C, Squitieri F, Sipion S (2001) Loss of normal huntingtin function: new developments in Huntington’s disease research. Trends Neurosci 24: 182–188CrossRefPubMedGoogle Scholar
  117. 117.
    Blandini F, Nappi G, Tassorelli C, Martignoni E (2000) Functional changes in the basal ganglia circuitry in Parkinson’s disease. Prog Neurobiol 62: 63–88CrossRefPubMedGoogle Scholar
  118. 118.
    Wyss-Coray T, Mucke L (2002) Inflammation in neurodegenerative disease — a double-edged sword. Neuron 35: 419–432CrossRefPubMedGoogle Scholar
  119. 119.
    Rieckmann P, Smith KJ (2001) Multiple sclerosis: more than inflammation and demyelination. Trends Neurosci 24: 435–437CrossRefPubMedGoogle Scholar
  120. 120.
    Martino G, Adorini L, Rieckmann P, Hillert J, Kallmann B, Comi G, Filippi M (2002) Inflammation in multiple sclerosis: the good, the bad, and the complex. Lancet Neurol 1: 499–509CrossRefPubMedGoogle Scholar
  121. 121.
    Yong VW (2004) Prospects for neuroprotection in multiple sclerosis. Front. Bioscience 9: 864–872Google Scholar
  122. 122.
    Carri MT, Ferri A, Cozzolino M, Calabrese L, Rotilio G (2003) Neurodegeneration in amyotrophic lateral sclerosis: the role of oxidative stress and altered homeostasis of metals. Brain Res Bull 61: 365–374CrossRefPubMedGoogle Scholar
  123. 123.
    Strong M, Rosenfeld J (2003) Amyotrophic lateral sclerosis: a review of current concepts. Amyotroph Lateral Scler Other Motor Neuron Disord 4: 136–143CrossRefPubMedGoogle Scholar
  124. 124.
    Lastres-Becker I, Hansen HH, Berrendero F, de Miguel R, Pérez-Rosado A, Manzanares J, Ramos JA, Fernández-Ruiz J (2002) Loss of cannabinoid CB 1 receptors and alleviation of motor hyperactivity and neurochemical deficits by endocannabinoid uptake inhibition in a rat model of Huntington’s disease. Synapse 44: 23–35CrossRefPubMedGoogle Scholar
  125. 125.
    Lastres-Becker I, de Miguel R, De Petrocellis L, Maklriyannis A, Di Marzo V, Fernández-Ruiz J (2003) Compounds acting at the endocannabinoid and/or endovanilloid systems reduce hyperkinesia in a rat model of Huntington’s disease. J Neurochem 84: 1097–1109CrossRefPubMedGoogle Scholar
  126. 126.
    Volicer L, Stelly M, Morris J, McLaughlin J, Volicer BJ (1997) Effects of dronabinol on anorexia and disturbed behavior in patients with Alzheimer’s disease. Int J Geriatr Psychiatry 12: 913–919CrossRefPubMedGoogle Scholar
  127. 127.
    Baker D, Pryce G, Croxford JL, Brown P, Pertwee RG, Huffman JW, Layward L (2000) Cannabinoids control spasticity and tremor in a multiple sclerosis model. Nature 404: 84–87CrossRefPubMedGoogle Scholar
  128. 128.
    Baker D, Pryce G, Croxford JL, Brown P, Pertwee RG, Makriyannis A, Khanolkar A, Layward L, Fezza F, Bisogno T, Di Marzo V (2001) Endocannabinoids control spasticity in experimental multiple sclerosis. FASEB J 15: 300–302PubMedGoogle Scholar
  129. 129.
    Brooks JW, Pryce G, Bisogno T, Jaggar SI, Hankey DJ, Brown P, Bridges D, Ledent C, Bifulco M, Rice AS et al. (2002) Arvanil-induced inhibition of spasticity and persistent pain: evidence for therapeutic sites of action different from the vanilloid VR1 receptor and cannabinoid CB 1/CB2 receptors. Eur J Pharmacol 439: 83–92CrossRefPubMedGoogle Scholar
  130. 130.
    de Lago E, Ligresti A, Ortar G, Morera E, Cabranes A, Pryce G, Bifulco M, Baker D, Fernandez-Ruiz J, Di Marzo V (2004) In vivo pharmacological actions of two novel inhibitors of anandamide cellular uptake. Eur J Pharmacol 484: 249–257CrossRefPubMedGoogle Scholar
  131. 131.
    Di Marzo V, Hill MP, Bisogno T, Crossman AR, Brotchie JM (2000) Enhanced levels of endocannabinoids in the globus pallidus are associated with a reduction in movement in an animal model of Parkinson’s disease. FASEB J 14: 1432–1438CrossRefPubMedGoogle Scholar
  132. 132.
    Brotchie JM (2000) The neural mechanisms underlying levodopa-induced dyskinesia in Parkinson’s disease. Ann Neurol 47: S105–S114PubMedGoogle Scholar
  133. 133.
    Mazzola C, Micale V, Drago F (2003) Amnesia induced by beta-amyloid fragments is counter-acted by cannabinoid CB1 receptor blockade. Eur J Pharmacol 477: 219–225CrossRefPubMedGoogle Scholar
  134. 134.
    Herkenham M, Lynn AB, Little MD, Melvin LS, Johnson MR, de Costa DR, Rice KC (1991) Characterization and localization of cannabinoid receptors in rat brain: a quantitative in vitro autoradiographic study. J Neurosci 11: 563–583PubMedGoogle Scholar
  135. 135.
    Factor SA, Firedman JH (1997) The emerging role of clozapine in the treatment of movement disorders. Mov Disord 12: 483–496CrossRefPubMedGoogle Scholar
  136. 136.
    Kieburtz K (1999) Antiglutamate therapies in Huntington’s disease. J Neural Transm Suppl 55: 97–102Google Scholar
  137. 137.
    Lastres-Becker I, De Miguel R, Fernández-Ruiz J (2003) The endocannabinoid system and Huntington’s disease. Curr Drug Target CNS Neurol Disord 2: 335–347CrossRefGoogle Scholar
  138. 138.
    Glass M, Faull RLM, Dragunow M (1993) Loss of cannabinoid receptors in the substantial nigra in Huntington’s disease. Neuroscience 56: 523–527CrossRefPubMedGoogle Scholar
  139. 139.
    Richfield EK, Herkenham M (1994) Selective vulnerability in Huntington’s disease: preferential loss of cannabinoid receptors in lateral globus pallidus. Ann Neurol 36: 577–584CrossRefPubMedGoogle Scholar
  140. 140.
    Glass M, Dragunow M, Faull RLM (2000) The pattern of neurodegeneration in Huntington’s disease: a comparative study of cannabinoid, dopamine, adenosine and GABA-A receptor alterations in the human basal ganglia in Huntington’s disease. Neuroscience 97: 505–519CrossRefPubMedGoogle Scholar
  141. 141.
    Lastres-Becker I, Berrendero F, Lucas JJ, Martin E, Yamamoto A, Ramos JA, Fernandez-Ruiz J (2002) Loss of mRNA levels, binding and activation of GTP-binding proteins for cannabinoid CB1 receptors in the basal ganglia of a transgenic model of Huntington’s disease. Brain Res 929: 236–242CrossRefPubMedGoogle Scholar
  142. 142.
    Denovan-Wright EM, Robertson HA (2000) Cannabinoid receptor messenger RNA levels decrease in subset neurons of the lateral striatum, cortex and hippocampus of transgenic Huntington’s disease mice. Neuroscience 98: 705–713CrossRefPubMedGoogle Scholar
  143. 143.
    Page KJ, Besret L, Jain M, Monaghan EM, Dunnett SB, Everitt BJ (2000) Effects of systemic 3-nitropropionic acid-induced lesions of the dorsal striatum on cannabinoid and mu-opioid receptor binding in the basal ganglia. Exp Brain Res 130: 142–150CrossRefPubMedGoogle Scholar
  144. 144.
    Lastres-Becker I, Fezza F, Cebeira M, Bisogno T, Ramos JA, Milone A, Fernández-Ruiz J, Di Marzo V (2001) Changes in endocannabinoid transmission in the basal ganglia in a rat model of Huntington’s disease. Neuroreport 12: 2125–2129CrossRefPubMedGoogle Scholar
  145. 145.
    Lastres-Becker I, Gómez M, de Miguel R, Ramos JA, Fernindez-Ruiz J (2002) Loss of cannabinoid CB1 receptors in the basal ganglia in the late akinetic phase of rats with experimental Huntington’s disease. Neurotox Res 4: 601–608CrossRefPubMedGoogle Scholar
  146. 146.
    Gu M, Gash MT, Mann VM, Javoy-Agid F, Cooper JM, Schapira AH (1996) Mitochondrial defect in Huntington’s disease caudate nucleus. Ann Neurol 39: 385–389CrossRefPubMedGoogle Scholar
  147. 147.
    Bizat N, Hermel JM, Humbert S, Jacquard C, Creminon C, Escartin C, Saudou F, Krajewski S, Hantraye P, Brouillet E (2003) In vivo calpain/caspase cross-talk during 3-nitropropionic acid-induced striatal degeneration: implication of a calpain-mediated cleavage of active caspase-3. J Biol Chem 278: 43245–43253CrossRefPubMedGoogle Scholar
  148. 148.
    Galas MC, Bizat N, Cuvelier L, Bantubungi K, Brouillet E, Schiffmann SN, Blum D (2004) Death of cortical and striatal neurons induced by mitochondrial defect involves differential molecular mechanisms. Neurobiol Dis 15: 152–159CrossRefPubMedGoogle Scholar
  149. 149.
    Toulmond S, Tang K, Bureau Y, Ashdown H, Degen S, O’Donnell R, Tam J, Han Y, Colucci J, Giroux A et al. (2004) Neuroprotective effects of M826, a reversible caspase-3 inhibitor, in the rat malonate model of Huntington’s disease. Br J Pharmacol 141: 689–697CrossRefPubMedGoogle Scholar
  150. 150.
    Rajkowska G, Selemon LD, Goldman-Rakic PS (1998) Neuronal and glial somal size in the prefrontal cortex: a postmortem morphometric study of schizophrenia and Huntington disease. Arch Gen Psychiatry 55: 215–224CrossRefPubMedGoogle Scholar
  151. 151.
    Sherer TB, Betarbet R, Greenamyre JT (2001) Pathogenesis of Parkinson’s disease. Curr Opin Investig Drugs 2: 657–662PubMedGoogle Scholar
  152. 152.
    Sethi KD (2002) Clinical aspects of Parkinson disease. Curr Opin Neurol 15: 457–460CrossRefPubMedGoogle Scholar
  153. 153.
    Carlsson A (2002) Treatment of Parkinson’s with L-DOPA. The early discovery phase, and a comment on current problems. J Neural Transm 109: 777–787CrossRefPubMedGoogle Scholar
  154. 154.
    Vajda FJ (2002) Neuroprotection and neurodegenerative disease. J Clin Neurosci 9: 4–8CrossRefPubMedGoogle Scholar
  155. 155.
    Tintner R, Jankovic J (2002) Treatment options for Parkinson’s disease. Curr Opin Neurol 15: 467–476CrossRefPubMedGoogle Scholar
  156. 156.
    Consroe P (1998) Brain cannabinoid systems as targets for the therapy of neurological disorders. Neurobiol Dis 5: 534–551CrossRefPubMedGoogle Scholar
  157. 157.
    Mbiller-Vahl KR, Kolbe H, Schneider U, Emrich HM (1999) Cannabis in movement disorders. Forsch Komplementdirmed 6: 23–27CrossRefGoogle Scholar
  158. 158.
    Lastres-Becker I, Cebeira M, de Ceballos M, Zeng B-Y, Jenner P, Ramos JA, Fernández-Ruiz J (2001) Increased cannabinoid CB1 receptor binding and activation of GTP-binding proteins in the basal ganglia of patients with Parkinson’s disease and MPTP-treated marmosets. Eur J Neurosci 14: 1827–1832CrossRefPubMedGoogle Scholar
  159. 159.
    Romero J, Berrendero F, Pérez-Rosado A, Manzanares J, Rojo A, Fernández-Ruiz J, de Yébenes JG, Ramos JA (2000) Unilateral 6-hydroxydopamine lesions of nigrostriatal dopaminergic neurons increased CB1 receptor mRNA levels in the caudate-putamen. Life Sci 66: 485–494CrossRefPubMedGoogle Scholar
  160. 160.
    Mailleux P, Vanderhaeghen JJ (1993) Dopaminergic regulation of cannabinoid receptor mRNA levels in the rat caudate-putamen: an in situ hybridization study. J Neurochem 61: 1705–1712PubMedGoogle Scholar
  161. 161.
    Brotchie JM (2003) CB1 cannabinoid receptor signalling in Parkinson’s disease. Curr Opin Pharmacol 3: 54–61CrossRefPubMedGoogle Scholar
  162. 162.
    Meschler JP, Howlett AC, Madras BK (2001) Cannabinoid receptor agonist and antagonist effects on motor function in normal and 1-methyl-4-phenyl-1,2,5,6-tetrahydropyridine (MPTP)-treated non-human primates. Psychopharmacology 156: 79–85CrossRefPubMedGoogle Scholar
  163. 163.
    Sañudo-Peña MC, Patrick SL, Khen S, Patrick RL, Tsou K, Walker JM (1998) Cannabinoid effects in basal ganglia in a rat model of Parkinson’s disease. Neurosci Lett 248: 171–174CrossRefPubMedGoogle Scholar
  164. 164.
    Frankel JP, Hughes A, Lees AJ, Stern GM (1990) Marijuana for parkinsonian tremor. J Neurol Neurosurg Psychiat 53: 436Google Scholar
  165. 165.
    Gao HM, Jiang J, Wilson B, Zhang W, Hong JS, Liu B (2002) Microglial activation-mediated delayed and progressive degeneration of rat nigral dopaminergic neurons: relevance to Parkinson’s disease. J Neurochem 81: 1285–1297CrossRefPubMedGoogle Scholar
  166. 166.
    Kim WG, Mohney RP, Wilson B, Jeohn GH, Liu B, Hong JS (2000) Regional difference in susceptibility to lipopolysaccharide-induced neurotoxicity in the rat brain: role of microglia. J Neurosci 20: 6309–6316PubMedGoogle Scholar
  167. 167.
    Nagatsu T, Mogi M, Ichinose H, Togari A (2000) Changes in cytokines and neurotrophins in Parkinson’s disease. J Neural Transm 60: 277–290Google Scholar
  168. 168.
    Maccioni RB, Mufioz JP, Barbeito L (2001) The molecular bases of Alzheimer’s disease and other neurodegenerative disorders. Arch Med Res 32: 367–381CrossRefPubMedGoogle Scholar
  169. 169.
    Blount PJ, Nguyen CD, McDeavitt JT (2002) Clinical use of cholinomimetic agents: a review. J Head Trauma Rehabil 17: 314–321PubMedGoogle Scholar
  170. 170.
    Reisberg B, Doody R, Stoffler A, Schmitt F, Ferris S, Mobius HJ (2003) Memantine in moderate-to-severe Alzheimer’s disease. N Engl JMed 348: 1333–1341CrossRefGoogle Scholar
  171. 171.
    Pazos MR, Núñez E, Benito C, Tolón RM, Romero J (2004) Role of the endocannabinoid system in Alzheimer’s disease: new perspectives. Life Sci 75: 1907–1915CrossRefPubMedGoogle Scholar
  172. 172.
    Westlake TM, Howlett AC, Bonner TI, Matsuda LA, Herkenham M (1994) Cannabinoid receptor binding and messenger RNA expression in human brain: an in vitro receptor autoradiography and in situ hybridization histochemistry study of normal aged and Alzheimer’s brains. Neuroscience 63: 637–652CrossRefPubMedGoogle Scholar
  173. 173.
    Romero J, Berrendero F, García-Gil L, de la Cruz P, Ramos JA, Fernández-Ruiz J (1998) Loss of cannabinoid receptor binding and messenger RNA levels and cannabinoid agonist-stimulated [35S]-GTPgS binding in the basal ganglia of aged rats. Neuroscience 84: 1075–1083CrossRefPubMedGoogle Scholar
  174. 174.
    Williams K, Alvarez X, Lackner AA (2001) Central nervous system perivascular cells are immunoregulatory cells that connect the CNS with the peripheral immune system. Glia 36: 156–164CrossRefPubMedGoogle Scholar
  175. 175.
    Sullivan JM (2000) Cellular and molecular mechanisms underlying learning and memory impairments produced by cannabinoids. Learn Memory 7: 132–139CrossRefGoogle Scholar
  176. 176.
    Milton NG (2002) Anandamide and noladin ether prevent neurotoxicity of the human amyloid-beta peptide. Neurosci Lett 332: 127–130PubMedGoogle Scholar
  177. 177.
    Iuvone T, Esposito G, Esposito R, Santamaria R, Di Rosa M, Izzo AA (2004) Neuroprotective effect of cannabidiol, a non-psychoactive component from Cannabis sativa, on beta-amyloid-induced toxicity in PC12 cells. J Neurochem 89: 134–141PubMedGoogle Scholar
  178. 178.
    Polman CH, Uitdehaag. Br Med J 2000) Drug treatment of multiple sclerosis. Br Med J 321: 490–494Google Scholar
  179. 179.
    Hafler DA (2004) Multiple sclerosis. J Clin Invest 113: 788–794PubMedGoogle Scholar
  180. 180.
    Werner P, Pitt D, Raine CS (2001) Multiple sclerosis: altered glutamate homeostasis in lesions correlates with oligodendrocyte and axonal damage. Ann Neurol 50: 169–180PubMedGoogle Scholar
  181. 181.
    Pitt D, Werner P, Raine CS (2000) Glutamate excitotoxicity in a model of multiple sclerosis. Nat Med 6: 67–70PubMedGoogle Scholar
  182. 182.
    Matute C, Alberdi E, Domercq M, Pérez-Cerda F, Pérez-Samartin A, Sánchez-Gómez MV (2001) The link between excitotoxic oligodendroglial death and demyelinating diseases. Trends Neurosci 24: 224–230PubMedGoogle Scholar
  183. 183.
    Pertwee RG (2002) Cannabinoids and multiple sclerosis. Pharmacol Ther 95: 165–174PubMedGoogle Scholar
  184. 184.
    Pryce G, Ahmed Z, Hankey DJ, Jackson SJ, Croxford JL, Pocock JM, Ledent C, Petzold A, Thompson AJ, Giovannoni G et al. (2003) Cannabinoids inhibit neurodegeneration in models of multiple sclerosis. Brain 126: 2191–2202PubMedGoogle Scholar
  185. 185.
    Zajicek J, Fox P, Sanders H, Wright D, Vickery J, Nunn A (2003) Thompson A. Cannabinoids for treatment of spasticity and other symptoms related to multiple sclerosis (CAMS study): multi-centre randomised placebo-controlled trial. Lancet 362: 1517–1526CrossRefPubMedGoogle Scholar
  186. 186.
    Lyman WD, Sonett JR, Brosnan CF, Elkin R, Bornstein MB (1989) Δ9-Tetrahydrocannabinol: a novel treatment for experimental autoimmune encephalomyelitis. J Neuroimmunol 23: 73–81PubMedGoogle Scholar
  187. 187.
    Wirguin I, Mechoulam R, Breuer A, Schezen E, Weidenfeld J, Brenner T (1994) Suppression of experimental autoimmune encephalomyelitis by cannabinoids. Immunopharmacology 28: 209–214PubMedGoogle Scholar
  188. 188.
    Cabranes A, Venderova K, de Lago E, Fezza F, Valenti M, Sánchez A, García-Merino A, Ramos JA, Di Marzo V, Fernández-Ruiz J (2005) Decreased endocannabinoid levels in the brain and beneficial effects of certain endocannabinoid uptake inhibitors in a rat model of multiple sclerosis: involvement of vanilloid TRPV1 receptors. Neurobiol Dis; in pressGoogle Scholar
  189. 189.
    Arévalo-Martin A, Vela JM, Molina-Holgado E, Borrell J, Guaza C (2003) Therapeutic action of cannabinoids in a murine model of multiple sclerosis. J Neurosci 23: 2511–2516PubMedGoogle Scholar
  190. 190.
    Croxford JL, Miller SD (2003) Immunoregulation of a viral model of multiple sclerosis using the synthetic cannabinoid R+WIN55,212. J Clin Invest 111: 1231–1240PubMedGoogle Scholar
  191. 191.
    Berrendero F, Sánchez A, Cabranes A, Puerta C, Ramos JA, García-Merino A, Fernández-Ruiz J (2001) Changes in cannabinoid CB1 receptors in striatal and cortical regions of rats with experimental allergic encephalomyelitis, an animal model of multiple sclerosis. Synapse 41: 195–202PubMedGoogle Scholar
  192. 192.
    Raman C, McAllister SD, Rizvi G, Patel SG, Moore DH, Abood ME (2004) Amyotrophic lateral sclerosis: delayed disease progression in mice by treatment with a cannabinoid. Amyotroph Lateral Scler Other Motor Neuron Disord 5: 33–39PubMedGoogle Scholar
  193. 193.
    Chou SM (1997) Neuropathology of amyotrophic lateral sclerosis: new perspectives on an old disease. J Formos Med Assoc 96: 488–498PubMedGoogle Scholar
  194. 194.
    Maier CM, Chan PH (2002) Role of superoxide dismutases in oxidative damage and neurode-generative disorders. Neuroscientist 8: 323–334PubMedGoogle Scholar
  195. 195.
    Witting A, Weydt P, Hong S, Kliot M, Moller T, Stella N (2004) Endocannabinoids accumulate in spinal cord of SOD1 transgenic mice. J Neurochem 89: 1555–1557PubMedGoogle Scholar

Copyright information

© Birkhäuser Verlag/Switzerland 2005

Authors and Affiliations

  • Javier Fernández-Ruiz
    • 1
  • Sara González
    • 1
  • Julián Romero
    • 2
  • José Antonio Ramos
    • 1
  1. 1.Departamento de Bioquímica y Biología Molecular, Facultad de MedicinaUniversidad ComplutenseMadridSpain
  2. 2.Laboratorio de Apoyo a la InvestigaciónFundación Hospital AlcorcónAlcorcón, MadridSpain

Personalised recommendations