A Finite Element Framework for Burton-Cabrera-Frank Equation

  • Frank Haußer
  • Axel Voigt
Conference paper
Part of the ISNM International Series of Numerical Mathematics book series (ISNM, volume 149)


A finite element framework is presented for the Burton-Cabrera-Frank (BCF) equation. The model is a 2 + 1-dimensional step flow model, discrete in the height but continuous in the lateral directions. The problem consists of adatom diffusion equations on terraces of different atomic height; boundary conditions at steps (terrace boundaries); and a normal velocity law for the motion of such boundaries determined by a two-sided flux, together with one-dimensional edge-diffusion. Two types of boundary conditions, modeling either diffusion limited growth or growth governed by attachment-detachment kinetics at the steps, are considered. We review the basic ideas of the algorithms, already described in [1, 2] and extent it to incorporate anisotropy of the step free energy, the edge mobility and the kinetic coefficients (attachment-detachment rates). The problem is solved using two independent meshes: a two-dimensional mesh for the adatom diffusion and a one-dimensional mesh for the step dynamics governed by an anisotropic geometric evolution law. Finally results on the anisotropic growth of single layer islands are presented.


step-flow model anisotropic geometric evolution laws parametric finite elements discrete-continuous coupling 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    E. Bänsch, F. Haußer, O. Lakkis, B. Li, A. Voigt, Finite element method for epitaxial growth with attachment-detachment kinetics J. of Comput. Phys. 194 (2004), 409–434.CrossRefGoogle Scholar
  2. [2]
    E. Bänsch, F. Haußer, A. Voigt, Finite Element Method for Epitaxial Growth with thermodynamic boundary conditions SIAM J. Sci. Comput. (2005), (to appear).Google Scholar
  3. [3]
    W.K. Burton, N. Cabrera, F.C. Frank, The growth of crystals and the equilibrium of their surfaces Phil. Trans. Roy. Soc. London Ser. A 243 (1951), 299–358.Google Scholar
  4. [4]
    J. Krug, (this volume).Google Scholar
  5. [5]
    M.F. Gyure, C. Ratsch, B. Merriman, R.E. Caflisch, S. Osher, J. Zinck, D. Vvedensky, Level set method for the simulation of epitaxial phenomena. Phys. Rev. E 58 (1998), R6931.CrossRefGoogle Scholar
  6. [6]
    R.E. Caflisch, M.F. Gyure, B. Merriman, S. Osher, C. Ratsch, D. Vvedensky, J. Zink, Island dynamics and the level set method for epitaxial growth. Appl. Math. Lett. 12 (1999), 13–22.CrossRefGoogle Scholar
  7. [7]
    S. Chen, B. Merriman, M. Kang, R.E. Caflisch, C. Ratsch, L.-T. Cheng, M. Gyure, R.P. Fedkiw, C. Anderson, S. Osher, Level Set Method for Thin Film Epitaxial Growth. J. Comp. Phys. 167 (2001), 475–500.CrossRefGoogle Scholar
  8. [8]
    M. Peterson, C. Ratsch, R.E. Caflisch, A. Zangwill, Level set approach to reversible epitaxial growth. Phys. Rev. E 64 (2001), 061602.CrossRefGoogle Scholar
  9. [9]
    C. Ratsch, M.F. Gyure, R.E. Caflisch, F. Gibou, M. Peterson, M. Kang, J. Garcia, D.D. Vvedensky, Level-set method for island dynamics in epitaxial growth. Phys. Rev. B 65 (2002), 195403.CrossRefGoogle Scholar
  10. [10]
    D.L. Chopp, A level-set method for simulating island coarsening. J. Comp. Phys. 162 (2000), 104–122.CrossRefGoogle Scholar
  11. [11]
    F. Liu, H. Metiu, Stability and kinetics of step motion on crystal surfaces Phys. Rev. E 49 (1997), 2601–2616.CrossRefGoogle Scholar
  12. [12]
    A. Karma, M. Plapp, Spiral surface growth without desorption Phys. Rev. Lett. 81 (1998), 4444–4447.CrossRefGoogle Scholar
  13. [13]
    A. Rätz, A. Voigt, Phase-Field Model for Island Dynamics Appl. Anal. 83 (2004), 1015–1025.CrossRefGoogle Scholar
  14. [14]
    O. Pierre-Louis, Phase-field models for step flow Phys. Rev. E 68 (2003), 020601.CrossRefGoogle Scholar
  15. [15]
    F. Otto. P. Penzler, A. Rätz, T. Rump, A. Voigt, A diffuse-interface approximation for step flow in epitaxial growth. Nonlin. 17 (2004), 477–491.CrossRefGoogle Scholar
  16. [16]
    F. Otto. P. Penzler, T. Rump, (this volume).Google Scholar
  17. [17]
    A. Rätz, A. Voigt, A Phase-Field Model for attachment-detachment kinetics in epitaxial growth. Euro. J. Appl. Math. (2004), (to appear).Google Scholar
  18. [18]
    P. Smereka, Semi-implicit level set methods for motion by mean curvature and surface diffusion J. Sci. Comp. 19 (2003), 439–456.CrossRefGoogle Scholar
  19. [19]
    U. Clarenz, F. Haußer, M. Rumpf, A. Voigt, U. Weikard, (this volume).Google Scholar
  20. [20]
    A. Rätz, A. Voigt, (this volume).Google Scholar
  21. [21]
    A. Schmidt, Computation of three dimensional dendrites with finite elements J. of Comput. Phys. 125 (1996), 293–312.CrossRefGoogle Scholar
  22. [22]
    A.-K. Tornberg, Interface tracking methods with applications to multiphase flow PhD thesis, NADA, KTH, Stockholm, Sweden (2000).Google Scholar
  23. [23]
    E. Bänsch, P. Morin, R.H. Nochetto, A Finite Element Method for surface diffusion: the parametric case J. of Comput. Phys. 203 (2005), 321–343.CrossRefGoogle Scholar
  24. [24]
    G. Dziuk, An algorithm for evolutionary surfaces Numer. Math. 58 (1991), 603–611.CrossRefGoogle Scholar
  25. [25]
    A. Schmidt, K.G. Siebert, Albert — software for scientific computations and applications Acta Math. Univ. Comenianae 70 (2001), 205–122.Google Scholar
  26. [26]
    F. Haußer, A. Voigt, (this volume).Google Scholar
  27. [27]
    F. Haußer, A. Voigt, Finite element method for epitaxial island growth. J. Crys. Growth 266 (2004), 381–387.CrossRefGoogle Scholar
  28. [28]
    M. Michely, J. Krug, Island, Mounds and Atoms. Springer, 2004Google Scholar

Copyright information

© Birkhäuser Verlag Basel/Switzerland 2005

Authors and Affiliations

  • Frank Haußer
    • Axel Voigt
      • 1
    1. 1.Crystal Growth groupresearch center caesarBonnGermany

    Personalised recommendations