Configurational Continuum Modelling of Crystalline Surface Evolution

  • Navot Israeli
  • Daniel Kandel
Conference paper
Part of the ISNM International Series of Numerical Mathematics book series (ISNM, volume 149)


We propose a novel approach to continuum modelling of dynamics of crystal surfaces. Our model follows the evolution of an ensemble of step configurations, which are consistent with the macroscopic surface profile. Contrary to the usual approach where the continuum limit is achieved when typical surface features consist of many steps, our continuum limit is approached when the number of step configurations of the ensemble is very large. The model is capable of handling singular surface structures such as corners and facets and has a clear computational advantage over discrete models.


continuum modeling multi scale modeling step flow surface evolution 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    W.K. Burton, N. Cabrera and F.C. Frank, The growth of crystals and the equilibrium structure of their surfaces, Trans. R. Soc. London Ser. A 243 (1951), 299–358.Google Scholar
  2. [2]
    For general reviews see H.-C. Jeong and E.D. Williams, Steps on surfaces: experiment and theory. Surf. Sci. Rep. 34 (1999), 171–294; E.D. Williams, Surface steps and surface morphology — understanding macroscopic phenomena from atomic observations. Surf. Sci. 299 (1994), 502–524.CrossRefGoogle Scholar
  3. [3]
    E.S. Fu, M.D. Johnson, D.-J. Liu, J.D. Weeks, and E.D. Williams, Size scaling in the decay of metastable structures. Phys. Rev. Lett. 77 (1996), 1091–1094.PubMedGoogle Scholar
  4. [4]
    S. Tanaka, N.C. Bartelt, C.C. Umbach, R.M. Tromp, and J.M. Blakely, Step permeability and the relaxation of biperiodic gratings on Si(001). Phys. Rev. Lett. 78 (1997), 3342–3345.CrossRefGoogle Scholar
  5. [5]
    W.W. Mullins, Theory of thermal groovings. J. Appl. Phys. 28 (1957), 333–339.CrossRefGoogle Scholar
  6. [6]
    M. Ozdemir and A. Zangwill, Morphological equilibration of a corrugated crystalline surface. Phys. Rev. B 42 (1990), 5013–5024.CrossRefGoogle Scholar
  7. [7]
    P. Nozières, On the motion of steps on a vicinal surface. J. Phys. I France 48 (1987), 1605–1608.Google Scholar
  8. [8]
    F. Lançon and J. Villain, Dynamics of a crystal-surface below its roughening transition. Phys. Rev. Lett. 64 (1990), 293–296.PubMedGoogle Scholar
  9. [9]
    M. Uwaha, J. Phys. Soc. Jpn. Relaxation of crystal shapes caused by step motion. 57 (1988), 1681–1686.CrossRefGoogle Scholar
  10. [10]
    J. Hager and H. Spohn, Self-similar morphology and dynamics of periodic surface profiles below the roughening transition. Surf. Sci. 324 (1995), 365–372.CrossRefGoogle Scholar
  11. [11]
    N. Israeli and D. Kandel, Profile scaling in decay of nanostructure. Phys. Rev. Lett. 80 (1998), 3300–3303.CrossRefGoogle Scholar
  12. [12]
    N. Israeli and D. Kandel, Profile of a decaying crystalline cone. Phys. Rev. B 60 (1999), 5946–5706.CrossRefGoogle Scholar
  13. [13]
    N. Israeli and D. Kandel, Decay of one-dimensional surface modulations. Phys. Rev. B 62 (2000), 13707–13717.CrossRefGoogle Scholar
  14. [14]
    N. Israeli, H.-C. Jeong, D. Kandel and J.D. Weeks, Dynamics and scaling of one-dimensional surface structures. Phys. Rev. B 61 (2000), 5698–5706.CrossRefGoogle Scholar
  15. [15]
    H.P. Bonzel, E. Preuss and B. Steffen, The dynamical behavior of periodic surface profiles on metals under the influence of anisotropic surface-energy. Appl. Phys. A 35 (1984), 1–8.CrossRefGoogle Scholar
  16. [16]
    H.P. Bonzel and E. Preuss, Morphology of periodic surface-profiles below the roughening temperature — Aspects of continuum theory. Surf. Sci. 336 (1995), 209–224.CrossRefGoogle Scholar
  17. [17]
    N. Israeli and D. Kandel, Novel continuum modeling of crystal surface evolution. Phys. Rev. Lett. 88, 116103 (2002).PubMedGoogle Scholar
  18. [18]
    A. Rettori and J. Villain, Flattening of grooves on a crystal-surface — A method of investigation of surface roughness. J. de Phys. 49 (1988), 257–267.Google Scholar
  19. [19]
    M.M. Gruber and W.W. Mullins, On the theory of anisotropy of crystalline surface tension. J. Phys. Chem. Solids 28 (1966), 875–876.CrossRefGoogle Scholar

Copyright information

© Birkhäuser Verlag Basel/Switzerland 2005

Authors and Affiliations

  • Navot Israeli
    • Daniel Kandel
      • 1
    1. 1.Department of Physics of Complex SystemsWeizmann Institute of ScienceRehovotIsrael

    Personalised recommendations