Coronavirus infections in veterinary medicine

  • Olaf Weber
  • Axel Schmidt
Part of the Birkhäuser Advances in Infectious Diseases BAID book series (BAID)


Infectious Bronchitis Virus Mouse Hepatitis Virus Feline Infectious Peritonitis Infectious Bronchitis Virus Strain Transmissible Gastroenteritis Virus 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Cavanagh D, Brian DA, Brinton MA, Enjuanes L, Holmes KV, Horzinek MC, Lai MM, Laude H, Plagemann PG, Siddell SG (1993) The Coronaviridae now comprises two genera, coronavirus and torovirus: Report of the Coronaviridae Study Group. Adv Exp Med Biol 342: 255–257PubMedGoogle Scholar
  2. 2.
    Cavanagh D (1997) Nidovirales: A new order comprising Coronaviridae and Arteriviridae. Arch Virol 142: 629–633PubMedGoogle Scholar
  3. 3.
    González JM, Gomez-Puertas P, Cavanagh D, Gorbalenya AE, Enjuanes L (2003) A comparative sequence analysis to revise the current taxonomy of the family Coronaviridae. Arch Virol 148: 2207–2235CrossRefPubMedGoogle Scholar
  4. 4.
    Makino S, Keck JG, Stohlman SA, Lai MMC (1986) High-frequency RNA recombination of murine coronaviruses. J Virol 57: 729–739PubMedGoogle Scholar
  5. 5.
    Horzinek MC (1999) Molecular evolution of corona-and toroviruses. Adv Exp Med Biol 473: 61–72PubMedGoogle Scholar
  6. 6.
    Brian DA, Spaan WJM (1998) Recombination and coronavirus defective interfering RNAs. Semin Virol 8: 101–107CrossRefGoogle Scholar
  7. 7.
    Blau DM, Holmes KV (1999) Human coronavirus 229E enters susceptible cells via the endocytic pathway. Mol Biol Cell 10: 220Google Scholar
  8. 8.
    McIntosh K (1996) Coronaviruses. In: Fields BN, Knipe DM, Howley PM, Griffin DE, Lamb RA, Martin MA, Roizman B, Strais SE (eds): Fields Virology. Lippincott-Raven, Philadelphia, 1192–1204Google Scholar
  9. 9.
    Phillip SF, Cartwright SF, Scott AC (1971) The size and morphology of transmissible gastroenteritis and vomiting and wasting disease viruses of pigs. Vet Res 88: 311–312Google Scholar
  10. 10.
    Pensaert MB, Debouck P (1978) A new coronavirus-like particle associated with diarrhea in swine. Arch Virol 58: 243–247CrossRefPubMedGoogle Scholar
  11. 11.
    Debouck P, Pensaert M (1980) Experimental infection of pigs with a new porcine enteric coronavirus, CV777. Am J Vet Res 41: 219–223PubMedGoogle Scholar
  12. 12.
    Jung K, Kim J, Kim O, Kim B, Chae C (2003) Differentiation between porcine epidemic diarrhea virus and transmissible gastroenteritis virus in formalin-fixed paraffin-embedded tissues by multiplex RT-nested PCR and comparison with in situ hybridization. J Virol Method 108: 41–47CrossRefGoogle Scholar
  13. 13.
    Delmas B, Gelfi J, L’Haridon R, Vogel LK, Sjostrom H, Noren O, Laude H (1992) Aminopeptidase N is a major receptor for the entero-pathogenic coronavirus TGEV. Nature 357: 417–420CrossRefPubMedGoogle Scholar
  14. 14.
    Krempl C, Schultze B, Laude H, Herrler G (1997) Point mutations in the S protein connect the sialic acid binding activity with the enteropathogenicity of transmissible gastroenteritis coronavirus. J Virol 71: 3285–3287PubMedGoogle Scholar
  15. 15.
    Sánchez CM, Izeta A, Sánchez-Morgado JM, Alonso S, Sola I, Balasch M, Plana-Durán J, Enjuanes L (1999) Targeted recombination demonstrates that the spike gene of transmissible gastroenteritis coronavirus is a determinant of its enteric tropism and virulence. J Virol 73: 7607–7618PubMedGoogle Scholar
  16. 16.
    Ballesteros ML, Sánchez CM, Enjuanes L (1997) Two amino acid changes at the N-terminus of transmissible gastroenteritis coronavirus spike protein result in the loss of enteric tropism. Virology 227: 378–388PubMedGoogle Scholar
  17. 17.
    Rasschaert D, Duarte M, Laude H (1990) Porcine respiratory coronavirus differs from transmissible gastroenteritis virus by a few genomic deletions. J Gen Virol 71: 2599–2607PubMedGoogle Scholar
  18. 18.
    Saif LJ (1993) Coronavirus immunogens. Vet Microbiol 37: 285–297PubMedGoogle Scholar
  19. Enjuanes L, Bria D, Cavanagh D, Holmes K, Lai MMC, Laude H, Masters P, Rottier P, Siddell S, Spaan WJM (2000) Coronaviridae. In: Van Regenmortel MHV, Fauquet CM, Bishop DHL, Carstens EB, Estes MK, Lemon SM, Maniloff J, Mayo MA, McGeoch DJ, Pringle CR (eds): Virus Taxonomy, Classification and Nomenclature of Viruses. Academic Press, New York, 835–849Google Scholar
  20. 20.
    Raamsman MJB, Locker JK, de Hooge A, de Vries AAF, Griffiths G, Vennema H, Rottier PJM (2000) Characterization of the coronavirus mouse hepatitis virus strain A59 small membrane protein. Eur J Virol 74: 2333–2342Google Scholar
  21. 21.
    Rottier PJM (1995) The coronavirus membrane protein. In: Siddell SG (ed): The Coronaviridae. Plenum Press, New York, 115–139Google Scholar
  22. 22.
    Lai MMC, Holmes KV (2001) Coronaviridae: The viruses and their replication. In: Knipe DM, Howley PM, Griffin DE, Lamb RA, Martin MA, Roizman B, Strais SE (eds): Fields Virology. Lippincott — Williams & Wilkins, Philadelphia, 1163–1185Google Scholar
  23. 23.
    Pratelli A, Martella V, Elia G, Decaro N, Aliberti A, Buonavoglia D, Tempesta M, Buonavoglia C (2001) Variation of the sequence in the gene encoding for transmembrane protein M of canine coronavirus (CCV). Mol Cell Probes 15: 229–233PubMedGoogle Scholar
  24. 24.
    Pratelli A, Elia G, Martella V, Tinelli A, Decaro N, Marsilio F, Buonavoglia D, Tempesta M, Buonavoglia C (2002) M gene evolution of canine coronavirus in naturally infected dogs. Vet Res 151: 758–761Google Scholar
  25. 25.
    Herrewegh AAPM, Smeenk I, Horzinek MC, Rottier PJM, De Groot RJ (1998) Feline coronavirus type II strains 79–1683 and 79–1146 originate from a double recombination between feline coronavirus type I and canine coronavirus. J Virol 72: 4508–4514PubMedGoogle Scholar
  26. 26.
    Hohdatsu T, Okada S, Koyama H (1991) Characterization of monoclonal antibodies against feline infectious peritonitis virus type II and antigenic relationship between feline, porcine, and canine coronaviruses. Arch Virol 117: 85–95PubMedGoogle Scholar
  27. 27.
    Hohdatsu T, Okada S, Ishizuka Y, Yamada H, Koyama H (1992) The prevalence of types I and II feline coronavirus infections in cats. J Vet Med Sci 54: 557–562PubMedGoogle Scholar
  28. 28.
    Motokawa K, Hohdatsu T, Aizawa C, Koyama H, Hashimoto H (1995) Molecular cloning and sequence determination of the peplomer protein gene of feline infectious peritonitis virus type I. Arch Virol 140: 469–480PubMedGoogle Scholar
  29. 29.
    Wesseling JG, Vennema H, Godeke G, Horzinek MC, Rottier PJM (1994) Nucleotide sequence and expression of the spike (S) gene of canine coronavirus and comparison with the S proteins of feline and porcine coronaviruses. J Gen Virol 75: 1789–1794PubMedGoogle Scholar
  30. 30.
    Stoddard CA, Scott FW (1989) Intrinsic resistance of feline macrophages to coronavirus infection correlates with in vivo virulence. J Virol 63: 436–440PubMedGoogle Scholar
  31. 31.
    Pedersen NC (1987) Virologic and immunologic aspects of feline infectious peritonitis virus infection. Adv Exp Med Biol 218: 529–550PubMedGoogle Scholar
  32. 32.
    Jacobse-Geels HE, Daha MR, Horzinek MC (1982) Antibody, immune complexes, and complement activity fluctuations in kittens with experimentally induced feline infectious peritonitis. Am J Vet Res 43: 666–670PubMedGoogle Scholar
  33. 33.
    Clark MA (1993) Bovine coronavirus. Br Vet J 149: 51–70PubMedGoogle Scholar
  34. 34.
    Zhang X, Herbst W, Kousoulas KG, Storz J (1994) Comparison of the S genes and the biological properties of respiratory and enteropathogenic bovine coronavirus. Arch Virol 134: 421–426PubMedGoogle Scholar
  35. 35.
    Hasoksuz M, Sreevatsan S, Cho KO, Hoet AE, Saif LJ (2002) Molecular analysis of the S1 subunit of the spike glycoprotein of respiratory and enteric bovine coronavirus isolates. Virus Res 84: 101–109PubMedGoogle Scholar
  36. 36.
    Mebus CA, White RG, Stair EL, Rhodes MB, Twiehaus MJ (1972) Neonatal calf diarrhea: Results of a field trial using a reo-like virus vaccine. Vet Med / Small Anim Clin 67: 173–178Google Scholar
  37. 37.
    Mebus CA, Stair FL, Rhodes MB, Twiehaus MJ (1973) Neonatal calf diarrhea: Propagation, attenuation and characteristics of a coronavirus-like agent. Am J Vet Res 34: 145–150PubMedGoogle Scholar
  38. 38.
    Storz J, Rott R (1981) Reactivity of antibodies in human serum with antigens of an enteropathogenic bovine coronavirus. Med Microbiol Immunol 169: 169–178PubMedGoogle Scholar
  39. 39.
    De Vries AAF, Horzinek MC, Rottier PJM, De Groot RJ (1997) The genome organization of the Nidovirales: Similarities and differences between arteri-, toro-, and coronaviruses. Semin Virol 8: 33–47Google Scholar
  40. 40.
    Chouljenko VN, Kousoulas KG, Lin X, Storz J (1998) Nucleotide and predicted amino acid sequences of all genes encoded by the 3′ genomic portion (9.5 kb) of respiratory bovine coronaviruses and comparisons among respiratory and enteric coronaviruses. Virus Genes 17: 33–42PubMedGoogle Scholar
  41. 41.
    Lai MMC, Cavanagh D (1997) The molecular biology of coronaviruses. Adv Virus Res 48: 1–100CrossRefPubMedGoogle Scholar
  42. 42.
    Schultze B, Gross HJ, Brossmer R, Herrler G (1991) The S protein of bovine coronavirus is a haemagglutinin recognizing 9-O-acetylated sialic acid as a receptor determinant. J Virol 65: 6232–6237Google Scholar
  43. 43.
    Schultze B, Herrler G (1994) Recognition of N-acetly-9-O-acetylneuraminic acid by bovine coronavirus and haemagglutinating encephalomyelitis virus. In: Laude H, Vautherot JF (eds): Coronaviruses. Plenum Press, New York, 299–304Google Scholar
  44. 44.
    Gallagher TM, Buchmeier MJ (2001) Coronavirus spike proteins in viral entry and pathogenesis. Virology 279: 371–374PubMedGoogle Scholar
  45. 45.
    Hajer I, Storz J (1978) Antigens of bovine coronavirus strain LY and their diagnostic properties. Am J Vet Res 39: 441–444PubMedGoogle Scholar
  46. 46.
    Rodak I, Babiuk LA, Acres SD (1982) Detection by radioimmunoassay and enzyme-linked immunosorbent assay of coronavirus antibodies in bovine serum and lacteal secretions. J Clin Microbiol 16: 34–40PubMedGoogle Scholar
  47. 47.
    Kapil S, Pomeroy KA, Goyal SM, Trent AM (1991) Experimental infection with a virulent pneumoenteric isolate of bovine coronavirus. J Vet Diagn Invest 3: 88–89PubMedGoogle Scholar
  48. 48.
    Kapil S, Basaraba RJ (1997) Infectious bovine rhinotracheitis, parainfluenza-3 and respiratory coronavirus. Vet Clin North Am Food Anim Pract 13: 455–469PubMedGoogle Scholar
  49. 49.
    Yang J, Wang ZH, Chen JJ, Hou JL (2003) Clinical detection of polymerase gene of SARS-associated coronavirus. Di Yi Jun Yi Da Xue Xue Bao 23: 424–427PubMedGoogle Scholar
  50. 50.
    King DJ, Cavanagh D (1991) Infectious bronchitis. In: Calnek BW, Barnes HJ, Beard CW, Reid WM, Yoder HW Jr (eds): Disease of Poultry. Iowa State University Press, Ames, IA, 471–484Google Scholar
  51. 51.
    Boursnell ME, Brown TD, Foulds IJ, Green PF, Tomley FM, Binns MM (19871) Completion of the sequence of the genome of the coronavirus avian infectious bronchitis virus. J Gen Virol 68: 57–77PubMedGoogle Scholar
  52. 52.
    Siddle S, Wege H, ter Meulen V (1982) The structure and replication of coronaviruses. Curr Top Microbiol Immunol 99: 131–163PubMedGoogle Scholar
  53. 53.
    Cook JKA (1984) The classification of new serotypes of infectious bronchitis virus isolated from poultry flocks in Britain 1981 and 1983. Avian Pathol 13: 733–741Google Scholar
  54. 54.
    Davelaar FG, Kouwenhoven B, Burger AG (1984) Occurrence and significance of infectious bronchitis virus variant strains in egg and broiler protection in The Netherlands. Vet Q 6: 114–120PubMedGoogle Scholar
  55. 55.
    King DJ (1988) Identification of recent infectious bronchitis virus isolated that are serologically different from current vaccine strains. Avian Dis 32: 362–364PubMedGoogle Scholar
  56. 56.
    Wang CH, Hsieh MC, Chang PC (1996) Isolation, pathogenicity, and H120 protection efficacy of infectious bronchitis viruses isolated in Taiwan. Avian Dis 40: 620–625PubMedGoogle Scholar
  57. 57.
    Wang CH, Tsai CT (1996) Genetic grouping for the isolates of avian infectious bronchitis viruses in Taiwan. Arch Virol 141, 1677–1688PubMedGoogle Scholar
  58. 58.
    Wang HN, Wu QZ, Huang Y, Liu P (1997) Isolation and identification of infectious bronchitis virus from chickens in Sichuan, China. Avian Dis 41: 279–282PubMedGoogle Scholar
  59. 59.
    Ignjatovi J, Sapats S (2000) Avian infectious bronchitis virus. Rev Sci Tech Off Int Epiz 19: 493–508Google Scholar
  60. 60.
    Nagaraja KV, Pomeroy BS (1997) Coronaviral enteritis of turkeys (bluecomb disease). In: Calnek BW, Barnes HJ, Beard CW, McDougald LR, Saif YM (eds): Diseases of Poultry. Iowa State University Press, Ames, IA, 686–692Google Scholar
  61. 61.
    Pomeroy BS, Nagaraja KV (1991) Coronaviral enteritis pf turkeys (bluecomb disease). In: Calnek BW, Barnes J, Beard CW, Reid WM, Yoder HW Jr (eds): Diseases of Poultry. Iowa State Univ. Press, Ames, IA, 239–246Google Scholar
  62. 62.
    Loa CC, Lin TL, Wu CC, Bryan T, Hooper T, Schrader D (2002) Specific mucosal IgA immunity in turkey poults infected with turkey coronavirus. Vet Immunol Immunopathol 88: 57–64PubMedGoogle Scholar
  63. 63.
    Calibeo-Hayes D, Denning SS, Stringham SM, Guy JS, Smith LG, Watson DW (2003) Mechanical transmission of turkey coronavirus by domestic houseflies (Musca domestica LINNAEAUS). Avian Dis 47: 149–153PubMedGoogle Scholar
  64. 64.
    Dea S, Garzon S, Tijssen P (1989) Isolation and trypsin-enhanced propagation of turkey enteric (bluecomb) coronaviruses in a continuous human rectal adenocarcinoma cell line. Am J Vet Res 50: 1310–1318PubMedGoogle Scholar
  65. 65.
    Guy JS, Barnes HJ, Smith LG, Breslin J (1997) Antigenic characterization of a turkey coronavirus identified in poultry enteritis-and mortality syndrome-affected turkeys. Avian Dis 41: 583–590PubMedGoogle Scholar
  66. 66.
    Ali A, Reynolds DL (1998) The in vitro propagation of stunting syndrome agent. Avian Dis 42: 657–666PubMedGoogle Scholar
  67. 67.
    Sharma JM (1991) Haemorrhagic enteritis of turkeys. Vet Immunol Immunopathol 30: 67–71PubMedGoogle Scholar
  68. 68.
    Ossa JE, Alexander J, Schurig GG (1983) Role of splenectomy in prevention of haemorrhagic enteritis and death from hemorrhagic enteritis virus in turkeys. Avian Dis 27: 1106–1111PubMedGoogle Scholar
  69. 69.
    Kyriazis AP, Di Persio L, Michael JG, Pesce AJ (1979) Influence of the mouse hepatitis virus (MHV) infection on the growth of human tumors in the athymic mouse. Intl J Cancer 23: 402–409Google Scholar
  70. 70.
    Akimaru K, Stuhlmiller GM, Seigler HF (1981) Influence of mouse hepatitis virus on the growth of human melanoma in the peritoneal cavity of the athymic mouse. J Surg Oncol 17: 327–339PubMedGoogle Scholar
  71. 71.
    Barthold SW (1986) Research complications and state of knowledge of rodent coronaviruses. In: Hamm TF (ed): Complications of Viral and Mycoplasmal Infections in Rodents to Toxicology Research Testing. Hemisphere, Washington DC, 53–89Google Scholar
  72. 72.
    Virelizier JL, Virelizier AM, Allison AC (1976) The role of circulating interferon in the modifications of the immune responsiveness to mouse hepatitis virus (MHV-3). J Immunol 117: 748–753PubMedGoogle Scholar
  73. 73.
    Baker DG (1998) Natural patogens of laboratory mice, rats and rabbits and their effects on research. Clin Microb Rev 11: 231–266Google Scholar
  74. 74.
    Boorman GA, Luster MI, Dean JH, Cambell ML, Lauer LA, Talley FA, Wilson RE, Collins MJ (1982) Peritoneal and macrophage alterations caused by naturally occurring mouse hepatitis virus. Am J Pathol 106: 110–117PubMedGoogle Scholar
  75. 75.
    Hensley LE, Holmes KV, Beauchemin N, Baric RS (1998) Virus-receptor interactions and interspecies transfer of a mouse hepatitis virus. Adv Exp Med Biol 440: 33–41PubMedGoogle Scholar

Copyright information

© Birkhäuser Verlag Basel/Switzerland 2005

Authors and Affiliations

  • Olaf Weber
    • 1
  • Axel Schmidt
    • 2
  1. 1.Institute of Molecular Medicine and Experimental ImmunologyRheinische Friedrich-Wilhelms-University BonnBonnGermany
  2. 2.Institute of Microbiology and VirologyUniversity Witten/HerdeckeWittenGermany

Personalised recommendations