Advertisement

Algebraic Aspects of the Dirichlet Problem

  • P. Ebenfelt
  • D. Khavinson
  • H.S. Shapiro
Part of the Operator Theory: Advances and Applications book series (OT, volume 156)

Keywords

Rational Function Dirichlet Problem Analytic Continuation Jacobi Polynomial Algebraic Function 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [E]
    P. Ebenfelt, Singularities encountered by the analytic continuation of solutions to Dirichlet’s problem, Complex Variables Theory Appl. 20 (1992), 75–92.zbMATHMathSciNetGoogle Scholar
  2. [EKS]
    P. Ebenfelt, D. Khavinson and H.S. Shapiro, Analytic continuation of Jacobi polynomial expansions, Indag. Math. 8 (1997), 19–31.MathSciNetGoogle Scholar
  3. [F]
    M.N. Ferrers, On the potentials of ellipsoids and ellipsoidal shells, Quarterly J. Pure and Applied Math. 14 (1877), 1–22.Google Scholar
  4. [GS]
    P. Gorkin and J. Smith, Dirichlet: his life, his principle, and his problem, Math. Magazine, (to appear).Google Scholar
  5. [K]
    D. Khavinson, Holomorphic partial differential equations and classical potential theory. Universidad de La Laguna, Departamento de Análisis Matemático, La Laguna, 1996. ii+123 pp. ISBN: 84-600-9323-9Google Scholar
  6. [KS]
    D. Khavinson and H.S. Shapiro, Dirichlet’s problem when the data is an entire function, Bull. London Math. Soc. 24 (1992), 456–468.MathSciNetGoogle Scholar
  7. [N]
    Z. Nehari, On the singularities of Legendre expansions, Arch. Rational Mech. Anal. 5 (1956), 987–992.zbMATHMathSciNetGoogle Scholar
  8. [Sh]
    H.S. Shapiro, An algebraic theorem of E. Fischer, and the holomorphic Goursat problem, Bull. London Math. Soc. 21 (1989), 513–537.zbMATHMathSciNetGoogle Scholar
  9. [SW]
    E.M. Stein and G. Weiss, Introduction to Fourier Analysis on Euclidian Spaces, Princeton University Press, Princeton, 1971.Google Scholar
  10. [S]
    G. Szegö, Orthogonal Polynomials, Amer. Math. Soc. Colloquium Publ., 23, New York, 1959.Google Scholar
  11. [WW]
    E.T. Whittaker, G.N. Watson, A Course ofModern Analysis, 4th Ed., Cambridge, 1958.Google Scholar

Copyright information

© Birkhäuser Verlag Basel/Switzerland 2005

Authors and Affiliations

  • P. Ebenfelt
    • 1
  • D. Khavinson
    • 2
  • H.S. Shapiro
    • 3
  1. 1.Department of MathematicsUniversity of California, San DiegoLa JollaUSA
  2. 2.Department of MathematicsUniversity of ArkansasFayettevilleUSA
  3. 3.Department of MathematicsRoyal Institute of TechnologyStockholmSweden

Personalised recommendations