Quadrature Domains and Fluid Dynamics

  • Darren Crowdy
Part of the Operator Theory: Advances and Applications book series (OT, volume 156)


Few physical scientists interested in the mathematical description of fluid flows will know what a quadrature domain is; just as few mathematicians interested in quadrature domain theory would profess to know much about fluid dynamics. And yet, recent research has shown that a surprisingly large number of the by-now classic exact solutions of two-dimensional fluid dynamics can be understood within the context of quadrature domain theory. This article surveys a number of different physical applications of quadrature domain theory arising in the general field of fluid dynamics.


quadrature domains complex analysis fluid dynamics 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    H.S. Shapiro, The Schwarz functions and its generalization to higher dimension, Wiley, New York, (1992).Google Scholar
  2. [2]
    M. Sakai, Quadrature domains, Lecture notes in mathematics, 934, Springer-Verlag, (1982).Google Scholar
  3. [3]
    S. Richardson, Hele-Shaw flows with a free boundary produced by the injection of fluid into a narrow channel, J. Fluid Mech., 56, 609–618, (1972).zbMATHGoogle Scholar
  4. [4]
    P.Ya. Polubarinova-Kochina, On the motion of the oil contour, Dokl. Akad. Nauk. SSSR, 47, 254–257, (1945).Google Scholar
  5. [5]
    P.P Kufarev, The oil contour problem for the circle with any number of wells, Dokl. Akad. Nauk. SSSR, 75, 507–510, (1950).MathSciNetGoogle Scholar
  6. [6]
    A.N. Varchenko and P.I. Etingof, Why the boundary of a round drop becomes a curve of order four, American Mathematical Society University Lecture Series, 3, (1994).Google Scholar
  7. [7]
    P. Davis, The Schwarz function and its applications, Carus Mathematical Monographs 17, Math. Assoc. of America, (1974).Google Scholar
  8. [8]
    B. Gustafsson, Quadrature identities and the Schottky double, Acta. Appl. Math., 1, 209–240, (1983).CrossRefzbMATHMathSciNetGoogle Scholar
  9. [9]
    B. Gustafsson, Applications of half-order differentials on Riemann surfaces to quadrature domains for arc-length, J. d’Analyse Math., 49, 54–89, (1987).zbMATHMathSciNetGoogle Scholar
  10. [10]
    D.G. Crowdy, Multipolar vortices and algebraic curves, Proc. Roy. Soc. A, 457, 2337–2359, (2001).zbMATHMathSciNetGoogle Scholar
  11. [11]
    D.G. Crowdy and H. Kang, Squeeze flow of multiply-connected fluid domains in a Hele-Shaw cell, J. Nonlin. Sci., 11, 279–304, (2001).CrossRefMathSciNetGoogle Scholar
  12. [12]
    D.G. Crowdy and J.S. Marshall, Constructing multiply-connected quadrature domains, SIAM J. Appl. Math., 64, 1334–1359, (2004).CrossRefMathSciNetGoogle Scholar
  13. [13]
    G. Valiron, Cours d’Analyse Mathematique, Theorie des fonctions, 2nd Edition, Masson et Cie, Paris (1947).Google Scholar
  14. [14]
    S. Richardson, Hele-Shaw flows with time-dependent free boundaries involving a multiply-connected fluid region, Eur. J. Appl. Math., 12, 571–599, (2002).Google Scholar
  15. [15]
    D. Mumford, C. Series and D. Wright, Indra’s Pearls: the vision of Felix Klein, Cambridge University Press, (2002).Google Scholar
  16. [16]
    H. Baker, Abelian functions, Cambridge University Press, Cambridge, (1995).Google Scholar
  17. [17]
    L. Carrillo, J. Soriano and J. Ortin, Radial displacement of a fluid annulus in a rotating Hele-Shaw cell, Phys. Fluids, 11, 778, (1999).CrossRefGoogle Scholar
  18. [18]
    D.G. Crowdy, Theory of exact solutions for the evolution of a fluid annulus in a rotating Hele-Shaw cell, Q. Appl. Math, LX(1), 11–36, (2002).MathSciNetGoogle Scholar
  19. [19]
    D.G. Crowdy and S. Tanveer, A theory of exact solutions for annular viscous blobs, J. Nonlinear Sci., 8, 375–400, (1998). Erratum, 11, 237, (2001).MathSciNetGoogle Scholar
  20. [20]
    D.G. Crowdy, Viscous sintering of unimodal and bimodal cylindrical packings with shrinking pores, Eur. J. Appl. Math., 14, 421–445, (2003).CrossRefzbMATHMathSciNetGoogle Scholar
  21. [21]
    D.G. Crowdy, On the construction of exact multipolar equilibria of the 2D Euler equations, Phys. Fluids, 14(1), (2002), 257–267.CrossRefMathSciNetGoogle Scholar
  22. [22]
    G.D. Crapper, An exact solution for progressive capillary waves of arbitrary amplitude, J. Fluid Mech., 2, 532, (1957).zbMATHMathSciNetGoogle Scholar
  23. [23]
    W. Kinnersley, Exact large amplitude capillary waves on sheets of fluid, J. Fluid Mech., 76, 229–241, (1977).MathSciNetGoogle Scholar
  24. [24]
    D.G. Crowdy, Steady nonlinear capillary waves on curved sheets, Eur. J. Appl. Math., 12, (2001), 689–708.zbMATHMathSciNetGoogle Scholar
  25. [25]
    S. Howison, Scholar
  26. [26]
    V.M. Entov, P.I. Etingof and D. Ya Kleinbock, On nonlinear interface dynamics in Hele-Shaw flows, Eur. J. Appl. Math., 6, 399–420, (1995).MathSciNetGoogle Scholar
  27. [27]
    P.G. Saffman, Vortex dynamics, Cambridge University Press, Cambridge, (1992).Google Scholar
  28. [28]
    D.G. Crowdy, Exact solutions for rotating vortex arrays with finite-area cores, J. Fluid Mech., 469, 209–235, (2002).CrossRefzbMATHMathSciNetGoogle Scholar
  29. [29]
    D.G. Crowdy, A class of exact multipolar vortices, Phys. Fluids, 11(9), 2556–2564, (1999).CrossRefMathSciNetGoogle Scholar
  30. [30]
    C.F. Carnevale and R.C. Kloosterziel, Emergence and evolution of triangular vortices, J. Fluid Mech., 259, 305–331, (1994).MathSciNetGoogle Scholar
  31. [31]
    D.G. Crowdy and M. Cloke, Analytical solutions for distributed multipolar vortex equilibria on a sphere, Phys. Fluids, 15, 22–34, (2002).MathSciNetGoogle Scholar
  32. [32]
    H.S. Shapiro, Unbounded quadrature domains, in Complex Analysis I, Proceedings, University of Maryland 1985–1986, C.A. Berenstein (ed.), Lecture Notes in Mathematics, 1275, Springer-Verlag, Berlin, pp. 287–331, (1987).Google Scholar
  33. [33]
    D.G. Crowdy, A new approach to free surface Euler flows with surface tension, Stud. Appl. Math., 105, 35–58, (2000).CrossRefzbMATHMathSciNetGoogle Scholar
  34. [34]
    D.G. Crowdy, Circulation-induced shape deformations of drops and bubbles: exact two-dimensional models, Phys. Fluids, 11(10), 2836–2845, (1999).CrossRefMathSciNetGoogle Scholar
  35. [35]
    N.M Zubarev, Exact solution of the problem of the equilibrium configuration of the charged surface of a liquid metal, J.E.T.P., 89(6), 1078–1085, (1999).Google Scholar
  36. [36]
    D.G. Crowdy, Hele-Shaw flows and water waves, J. Fluid Mech., 409, 223–242, (2000).CrossRefzbMATHMathSciNetGoogle Scholar
  37. [37]
    R.W. Hopper, Plane Stokes flow driven by capillarity on a free surface, J. Fluid Mech., 213, 349–375, (1990).zbMATHMathSciNetGoogle Scholar
  38. [38]
    D.G. Crowdy, A note on viscous sintering and quadrature identities, Eur. J. Appl. Math., 10, 623–634, (1999).CrossRefzbMATHMathSciNetGoogle Scholar
  39. [39]
    G.A.L. Van de Vorst, Integral method for a two-dimensional Stokes flow with shrinking holes applied to viscous sintering, J. Fluid Mech., 257, 667–689, (1993).zbMATHGoogle Scholar
  40. [40]
    S. Richardson, Plane Stokes flow with time-dependent free boundaries in which the fluid occupies a doubly-connected region, Eur. J. Appl. Math., 11 249–269, (2000).zbMATHGoogle Scholar
  41. [41]
    S. Tanveer and G.L. Vasconcelos, Time-evolving bubbles in two-dimensional Stokes flow, J. Fluid Mech., 301, 325–344, (1995).MathSciNetGoogle Scholar
  42. [42]
    D.G. Crowdy, Compressible bubbles in Stokes flow, J. Fluid Mech., 476, 345–356, (2003).CrossRefzbMATHMathSciNetGoogle Scholar
  43. [43]
    D.G. Crowdy, Exact solutions for two bubbles in the flow-field of a four-roller mill, J. Eng. Math., 44, 311–330, (2002).CrossRefzbMATHMathSciNetGoogle Scholar
  44. [44]
    D.G. Crowdy, On a class of geometry-driven free boundary problems, SIAM J. Appl. Math., 62(2), 945–954, (2002).zbMATHMathSciNetGoogle Scholar
  45. [45]
    A.S. Fokas, On the integrability of linear and nonlinear PDE’s, J. Math. Phys., 41, 4188, (2000).CrossRefzbMATHMathSciNetGoogle Scholar
  46. [46]
    P.B. Wiegmann and A. Zabrodin, Conformal maps and dispersionless integrable hierarchies, Comm. Math. Phys., 213, 523–538, (2000).CrossRefMathSciNetGoogle Scholar
  47. [47]
    D.G. Dritschel, J.N. Reinaud and W.J. McKiver, The quasi-geostrophic ellipsoidal vortex model, J. Fluid Mech., 505, 201–223, (2004).CrossRefGoogle Scholar
  48. [48]
    D. Khavinson and H.S. Shapiro, The Schwarz potential in ℝn and Cauchy’s problem for the Laplace equation, TRITA-MAT-1989-36, Royal Institute of Technology research report, (1989).Google Scholar

Copyright information

© Birkhäuser Verlag Basel/Switzerland 2005

Authors and Affiliations

  • Darren Crowdy
    • 1
  1. 1.Department of MathematicsImperial College of Science, Technology and MedicineLondonUK

Personalised recommendations