Skip to main content

Part of the book series: Operator Theory: Advances and Applications ((OT,volume 153))

Abstract

This paper contains an analysis of weighted composition operators between Hardy and Bergman spaces of general simply-connected complex domains. Concepts studied include boundedness, compactness, boundedness below, isometry and invariant subspaces.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. P.S. Bourdon, J.H. Shapiro, Cyclic Phenomena for Composition Operators. Memoirs of the A.M.S. 596 (1997).

    Google Scholar 

  2. B.J. Carswell, P.L. Duren, M.I. Stessin, Multiplication Invariant Subspaces of the Bergman Space. Indiana Univ. Math. J. 51 (2002), no. 4, 931–961.

    Google Scholar 

  3. I. Chalendar, J.R. Partington, On the Structure of Invariant Subspaces for Isometric Composition Operators on H2(\(\mathbb{D}\)) and H2(\(\mathbb{C}\)+). Arch. Math. (Basel) 81 (2003), 2, 193–207.

    Google Scholar 

  4. I. Chalendar, J.R. Partington, Spectral density for multiplication operators with applications to factorization of L1 functions. J. Operator Theory 50 (2003), 2, 411–422.

    Google Scholar 

  5. J.A. Cima, J. Thomson, W. Wogen, On Some Properties of Composition Operators. Indiana Univ. Math. J. 24 (1974/75), 215–220.

    Google Scholar 

  6. M.D. Contreras, A.G. Hernández-Díaz Weighted Composition Operators on Hardy Spaces. J. Math. Anal. Appl. 263 (2001), 224–233.

    Google Scholar 

  7. C.C. Cowen, B.D. MacCluer, Composition Operators on Spaces of Analytic Functions. Studies in Advanced Mathematics, CRC Press, Boca Raton, FL, 1995.

    Google Scholar 

  8. P.L. Duren. Theory of Hp Spaces. Pure and Applied-Mathematics 38 Academic Press, New York, 1970.

    Google Scholar 

  9. W.W. Hastings, A Carleson Measure Theorem for Bergman Spaces. Proc. Amer. Math. Soc. 52 (1975), 237–241.

    Google Scholar 

  10. H. Hedenmalm, B. Korenblum, K. Zhu, Theory of Bergman Spaces. Springer-Verlag, New York, 2000.

    Google Scholar 

  11. K. Hoffman, Banach Spaces of Analytic Functions. Prentice-Hall, Englewood Cliffs, 1965.

    Google Scholar 

  12. T.L. Lance, M.I. Stessin, Multiplication Invariant Subspaces of Hardy Spaces. Canad. J. Math. 49 (1997), 100–118.

    Google Scholar 

  13. D.H. Luecking, Inequalities on Bergman Spaces. Illinois J. Math. 25 (1981), 1–11.

    Google Scholar 

  14. B.D. MacCluer, J.H. Shapiro, Angular Derivatives and Compact Composition Operators on the Hardy and Bergman Spaces. Canad. J. Math. 38 (1986), 878–906.

    Google Scholar 

  15. G. McDonald, C. Sundberg, Toeplitz Operators on the Disc. Indiana Univ. Math. J. 28 (1979), 595–611.

    Google Scholar 

  16. N.K. Nikolski, Operators, Functions, and Systems: An Easy Reading. Vol. 1. Hardy, Hankel, and Toeplitz. Translated from the French by Andreas Hartmann. Mathematical Surveys and Monographs 92, American Mathematical Society, Providence, RI, 2002.

    Google Scholar 

  17. E.A. Nordgren, Composition Operators. Canad. J. Math. 20 (1968), 442–449.

    Google Scholar 

  18. E. Nordgren, P. Rosenthal, F.S. Wintrobe, Invertible Composition Operators on Hp. J. Funct. Anal. 73 (1987), 324–344.

    Google Scholar 

  19. J.H. Shapiro, The Essential Norm of a Composition Operator. Ann. Math. 125 (1987), 375–404.

    Google Scholar 

  20. J.H. Shapiro, Composition Operators and Classical Function theory. Springer-Verlag, 1993.

    Google Scholar 

  21. J.H. Shapiro, W. Smith, Hardy Spaces that Support no Compact Composition Operators. J. Funct. Anal. 205 (2003), 1, 62–89.

    Google Scholar 

  22. K.H. Zhu, Operator Theory in Function Spaces. Marcel Dekker, 1990.

    Google Scholar 

  23. N. Zorboska, Composition Operators with Closed Range. Trans. Amer. Math. Soc. 344 (1994), 791–801.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Birkhäuser Verlag Basel/Switzerland

About this paper

Cite this paper

Kumar, R., Partington, J.R. (2004). Weighted Composition Operators on Hardy and Bergman Spaces. In: Gaşpar, D., Timotin, D., Zsidó, L., Gohberg, I., Vasilescu, FH. (eds) Recent Advances in Operator Theory, Operator Algebras, and their Applications. Operator Theory: Advances and Applications, vol 153. Birkhäuser Basel. https://doi.org/10.1007/3-7643-7314-8_9

Download citation

Publish with us

Policies and ethics