Advertisement

Role of monocytes and macrophages in angiogenesis

  • Leni Moldovan
  • Nicanor I. Moldovan
Part of the Experientia Supplementum book series (EXS)

Keywords

Vascular Endothelial Growth Factor Endothelial Progenitor Cell Cardiac Myxoma Venous Thrombus Inflammatory Angiogenesis 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Risau W, Flamme I (1995) Vasculogenesis. Annu Rev Cell Dev Biol 11: 73–91PubMedCrossRefGoogle Scholar
  2. 2.
    Risau W (1998) Development and differentiation of endothelium. Kidney Int Suppl 67: S3–S6PubMedCrossRefGoogle Scholar
  3. 3.
    Folkman J, Haudenschild C (1980) Angiogenesis in vitro. Nature 288: 551–556PubMedCrossRefGoogle Scholar
  4. 4.
    Takakura N, Watanabe T, Suenobu S, Yamada Y, Noda T, Ito Y, Satake M, Suda T (2000) A role for hematopoietic stem cells in promoting angiogenesis. Cell 102: 199–209PubMedCrossRefGoogle Scholar
  5. 5.
    Sunderkotter C, Steinbrink K, Goebeler M, Bhardwaj R, Sorg C (1994) Macrophages and angiogenesis. J Leukocyte Biol 55: 410–422PubMedGoogle Scholar
  6. 6.
    Bodolay E, Koch AE, Kim J, Szegedi G, Szekanecz Z (2002) Angiogenesis and chemokines in rheumatoid arthritis and other systemic inflammatory rheumatic diseases. J Cell Mol Med 6: 357–376PubMedCrossRefGoogle Scholar
  7. 7.
    Afuwape AO, Kiriakidis S, Paleolog EM (2002) The role of the angiogenic molecule VEGF in the pathogenesis of rheumatoid arthritis. Histol Histopathol 17: 961–972PubMedGoogle Scholar
  8. 8.
    Dahlqvist K, Umemoto EY, Brokaw JJ, Dupuis M, McDonald DM (1999) Tissue macrophages associated with angiogenesis in chronic airway inflammation in rats. Am J Respir Cell Mol Biol 20: 237–247PubMedGoogle Scholar
  9. 9.
    Beck DW, Hart MN, Cancilla PA (1983) The role of the macrophage in microvascular regeneration following brain injury. J Neuropathol Exp Neurol 42: 601–614PubMedCrossRefGoogle Scholar
  10. 10.
    Sunderkotter C, Beil W, Roth J, Sorg C (1991) Cellular events associated with inflammatory angiogenesis in the mouse cornea. Am J Pathol 138: 931–939PubMedGoogle Scholar
  11. 11.
    DiPietro LA and Polverini PJ (1993) Role of the macrophage in the positive and negative regulation of wound neovascularization. Behring Inst Mitt 238–247Google Scholar
  12. 12.
    Ross R (1999) Atherosclerosis is an inflammatory disease. Am Heart J 138: S419–S420PubMedCrossRefGoogle Scholar
  13. 13.
    Cliff WJ, Schoefl GI (1983) Pathological vascularization of the coronary intima. Ciba Found Symp 100: 207–221PubMedGoogle Scholar
  14. 14.
    Kamat BR, Galli SJ, Barger AC, Lainey LL, Silverman KJ (1987) Neovascularization and coronary atherosclerotic plaque: Cinematographic localization and quantitative histologic analysis. Hum Pathol 18: 1036–1042PubMedCrossRefGoogle Scholar
  15. 15.
    O’Brien ER, Garvin MR, Dev R, Stewart DK, Hinohara T, Simpson JB, Schwartz SM (1994) Angiogenesis in human coronary atherosclerotic plaques. Am J Pathol 145: 883–894Google Scholar
  16. 16.
    Moulton KS, Heller E, Konerding MA, Flynn E, Palinski W, Folkman J (1999) Angiogenesis inhibitors endostatin or TNP-470 reduce intimal neovascularization and plaque growth in apolipoprotein E-deficient mice. Circulation 99: 1726–1732PubMedGoogle Scholar
  17. 17.
    Celletti FL, Waugh JM, Amabile PG, Kao EY, Boroumand S, Dake MD (2002) Inhibition of vascular endothelial growth factor-mediated neointima progression with angiostatin or paclitaxel. J Vasc Interv Radiol 13: 703–707PubMedCrossRefGoogle Scholar
  18. 18.
    Moulton KS, Vakili K, Zurakowski D, Soliman M, Butterfield C, Sylvin E, Lo KM, Gillies S, Javaherian K, Folkman J (2003) Inhibition of plaque neovascularization reduces macrophage accumulation and progression of advanced atherosclerosis. Proc Natl Acad Sci USA 100: 4736–4741PubMedCrossRefGoogle Scholar
  19. 19.
    Amorino GP, Hoover RL (1998) Interactions of monocytic cells with human endothelial cells stimulate monocytic metalloproteinase production. Am J Pathol 152: 199–207PubMedGoogle Scholar
  20. 20.
    von Bulow C, Hayen W, Hartmann A, Mueller-Klieser W, Allolio B, Nehls V (2001) Endothelial capillaries chemotactically attract tumour cells. J Pathol 193: 367–376CrossRefGoogle Scholar
  21. 21.
    Li CY, Shan S, Huang Q, Braun RD, Lanzen J, Hu K, Lin P, Dewhirst MW (2000) Initial stages of tumor cell-induced angiogenesis: evaluation via skin window chambers in rodent models. J Natl Cancer Inst 92: 143–147PubMedCrossRefGoogle Scholar
  22. 22.
    Folkman J (1990) What is the evidence that tumors are angiogenesis dependent? J Natl Cancer Inst 82: 4–6PubMedCrossRefGoogle Scholar
  23. 23.
    Carmeliet P, Jain RK (2000) Angiogenesis in cancer and other diseases. Nature 407: 249–257PubMedCrossRefGoogle Scholar
  24. 24.
    Folkman J (2002) Role of angiogenesis in tumor growth and metastasis. Semin Oncol 29: 15–18PubMedGoogle Scholar
  25. 25.
    Nishie A, Ono M, Shono T, Fukushi J, Otsubo M, Onoue H, Ito Y, Inamura T, Ikezaki K, Fukui M et al. (1999) Macrophage infiltration and heme oxygenase-1 expression correlate with angiogenesis in human gliomas. Clin Cancer Res 5: 1107–1113PubMedGoogle Scholar
  26. 26.
    Hamada I, Kato M, Yamasaki T, Iwabuchi K, Watanabe T, Yamada T, Itoyama S, Ito H, Okada K (2002) Clinical effects of tumor-associated macrophages and dendritic cells on renal cell carcinoma. Anticancer Res 22: 4281–4284PubMedGoogle Scholar
  27. 27.
    Ohta M, Kitadai Y, Tanaka S, Yoshihara M, Yasui W, Mukaida N, Haruma K, Chayama K (2003) Monocyte chemoattractant protein-1 expression correlates with macrophage infiltration and tumor vascularity in human gastric carcinomas. Int J Oncol 22: 773–778PubMedGoogle Scholar
  28. 28.
    Chen JJ, Yao PL, Yuan A, Hong TM, Shun CT, Kuo ML, Lee YC, Yang PC (2003) Up-regulation of tumor interleukin-8 expression by infiltrating macrophages: Its correlation with tumor angiogenesis and patient survival in non-small cell lung cancer. Clin Cancer Res 9: 729–737PubMedGoogle Scholar
  29. 29.
    Zhang T, Koide N, Wada Y, Tsukioka K, Takayama K, Kono T, Kitahara H, Amano J (2003) Significance of monocyte chemotactic protein-1 and thymidine phosphorylase in angiogenesis of human cardiac myxoma. Circ J 67: 54–60PubMedCrossRefGoogle Scholar
  30. 30.
    Torisu H, Ono M, Kiryu H, Furue M, Ohmoto Y, Nakayama J, Nishioka Y, Sone S, Kuwano M (2000) Macrophage infiltration correlates with tumor stage and angiogenesis in human malignant melanoma: possible involvement of TNFalpha and IL-1alpha. Int J Cancer 85: 182–188PubMedGoogle Scholar
  31. 31.
    Nesbit M, Schaider H, Miller TH, Herlyn M (2001) Low-level monocyte chemoattractant protein-1 stimulation of monocytes leads to tumor formation in nontumorigenic melanoma cells. J Immunol 166: 6483–6490PubMedGoogle Scholar
  32. 32.
    Kataki A, Scheid P, Piet M, Marie B, Martinet N, Martinet Y, Vignaud JM (2002) Tumor infiltrating lymphocytes and macrophages have a potential dual role in lung cancer by supporting both host-defense and tumor progression. J Lab Clin Med 140: 320–328PubMedCrossRefGoogle Scholar
  33. 33.
    Schaper W, Ito WD (1996) Molecular mechanisms of coronary collateral vessel growth. Circ Res 79: 911–919PubMedGoogle Scholar
  34. 34.
    Heilmann C, Beyersdorf F, Lutter G (2002) Collateral growth: Cells arrive at the construction site. Cardiovasc Surg 10: 570–578PubMedCrossRefGoogle Scholar
  35. 35.
    Arras M, Mollnau H, Strasser R, Wenz R, Ito WD, Schaper J, Schaper W (1998) The delivery of angiogenic factors to the heart by microsphere therapy. Nat Biotechnol 16: 159–162PubMedCrossRefGoogle Scholar
  36. 36.
    Voskuil M, van Royen N, Hoefer IE, Seidler R, Guth BD, Bode C, Schaper W, Piek JJ, Buschmann IR (2003) Modulation of collateral artery growth in a porcine hindlimb ligation model using MCP-1. Am J Physiol-Heart Circ Physiol 284: H1422–H1428PubMedGoogle Scholar
  37. 37.
    Pipp F, Heil M, Issbrucker K, Ziegelhoeffer T, Martin S, van den HJ, Weich H, Fernandez B, Golomb G, Carmeliet P et al. (2003) VEGFR-1-selective VEGF homologue PlGF is arteriogenic: evidence for a monocyte-mediated mechanism. Circ Res 92: 378–385PubMedCrossRefGoogle Scholar
  38. 38.
    Waltenberger J, Lange J, Kranz A (2000) Vascular endothelial growth factor-A-induced chemotaxis of monocytes is attenuated in patients with diabetes mellitus: A potential predictor for the individual capacity to develop collaterals. Circulation 102: 185–190PubMedGoogle Scholar
  39. 39.
    Ferrara N (2002) Role of vascular endothelial growth factor in physiologic and pathologic angiogenesis: therapeutic implications. Semin Oncol 29: 10–14PubMedGoogle Scholar
  40. 40.
    Clauss M, Gerlach M, Gerlach H, Brett J, Wang F, Familletti PC, Pan YC, Olander JV, Connoll DT, Stern D (1990) Vascular permeability factor: A tumor-derived polypeptide that induces endothelial cell and monocyte procoagulant activity, and promotes monocyte migration. J Exp Med 172: 1535–1545PubMedCrossRefGoogle Scholar
  41. 41.
    Barleon B, Sozzani S, Zhou D, Weich HA, Mantovani A, Marme D (1996) Migration of human monocytes in response to vascular endothelial growth factor (VEGF) is mediated via the VEGF receptor flt-1. Blood 87: 3336–3343PubMedGoogle Scholar
  42. 42.
    Sawano A, Iwai S, Sakurai Y, Ito M, Shitara K, Nakahata T, Shibuya M (2001) Flt-1, vascular endothelial growth factor receptor 1, is a novel cell surface marker for the lineage of monocytemacrophages in humans. Blood 97: 785–791PubMedCrossRefGoogle Scholar
  43. 43.
    Waltham M, Burnand KG, Collins M, Smith A (2000) Vascular endothelial growth factor and basic fibroblast growth factor are found in resolving venous thrombi. J Vasc Surg 32: 988–996PubMedCrossRefGoogle Scholar
  44. 44.
    Waltham M, Burnand KG, Collins M, McGuinness CL, Singh I, Smith A (2003) Vascular endothelial growth factor enhances venous thrombus recanalisation and organisation. Thromb Haemost 89: 169–176PubMedGoogle Scholar
  45. 45.
    Duyndam MC, Hilhorst MC, Schluper HM, Verheul HM, van Diest PJ, Kraal G, Pinedo HM, Boven E (2002) Vascular endothelial growth factor-165 overexpression stimulates angiogenesis and induces cyst formation and macrophage infiltration in human ovarian cancer xenografts. Am J Pathol 160: 537–548PubMedGoogle Scholar
  46. 46.
    Constant JS, Feng JJ, Zabel DD, Yuan H, Suh DY, Scheuenstuhl H, Hunt TK, Hussain MZ (2000) Lactate elicits vascular endothelial growth factor from macrophages: a possible alternative to hypoxia. Wound Repair Regen 8: 353–360PubMedCrossRefGoogle Scholar
  47. 47.
    Unemori EN, Lewis M, Constant J, Arnold G, Grove BH, Normand J, Deshpande U, Salles A, Pickford LB, Erikson ME et al. (2000) Relaxin induces vascular endothelial growth factor expression and angiogenesis selectively at wound sites. Wound Repair Regen 8: 361–370PubMedCrossRefGoogle Scholar
  48. 48.
    Itaya H, Imaizumi T, Yoshida H, Koyama M, Suzuki S, Satoh K (2001) Expression of vascular endothelial growth factor in human monocyte/macrophages stimulated with lipopolysaccharide. Thromb Haemost 85: 171–176PubMedGoogle Scholar
  49. 49.
    Mukutmoni M, Hubbard NE, Erickson KL (2001) Prostaglandin E(2) modulation of vascular endothelial growth factor production in murine macrophages. Prostaglandins Leukot Essent Fatty Acids 65: 123–131PubMedCrossRefGoogle Scholar
  50. 50.
    Kasama T, Shiozawa F, Kobayashi K, Yajima N, Hanyuda M, Takeuchi HT, Mori Y, Negishi M, Ide H, Adachi M (2001) Vascular endothelial growth factor expression by activated synovial leukocytes in rheumatoid arthritis: critical involvement of the interaction with synovial fibroblasts. Arthritis Rheum 44: 2512–2524PubMedCrossRefGoogle Scholar
  51. 51.
    Barbera-Guillem E, Nyhus JK, Wolford CC, Friece CR, Sampsel JW (2002) Vascular endothelial growth factor secretion by tumor-infiltrating macrophages essentially supports tumor angiogenesis, and IgG immune complexes potentiate the process. Cancer Res 62: 7042–7049PubMedGoogle Scholar
  52. 52.
    Weber KS, Nelson PJ, Grone HJ, Weber C (1999) Expression of CCR2 by endothelial cells: Implications for MCP-1 mediated wound injury repair and in vivo inflammatory activation of endothelium. Arterioscler Thromb Vasc Biol 19: 2085–2093PubMedGoogle Scholar
  53. 53.
    Salcedo R, Ponce ML, Young HA, Wasserman K, Ward JM, Kleinman HK, Oppenheim JJ, Murphy WJ (2000) Human endothelial cells express CCR2 and respond to MCP-1: direct role of MCP-1 in angiogenesis and tumor progression. Blood 96: 34–40PubMedGoogle Scholar
  54. 54.
    Goede V, Brogelli L, Ziche M, Augustin HG (1999) Induction of inflammatory angiogenesis by monocyte chemoattractant protein-1. Int J Cancer 82: 765–770PubMedCrossRefGoogle Scholar
  55. 55.
    Liss C, Fekete MJ, Hasina R, Lam CD, Lingen MW (2001) Paracrine angiogenic loop between head-and-neck squamous-cell carcinomas and macrophages. Int J Cancer 93: 781–785PubMedCrossRefGoogle Scholar
  56. 56.
    Ohta M, Kitadai Y, Tanaka S, Yoshihara M, Yasui W, Mukaida N, Haruma K, Chayama K (2002) Monocyte chemoattractant protein-1 expression correlates with macrophage infiltration and tumor vascularity in human esophageal squamous cell carcinomas. Int J Cancer 102: 220–224PubMedCrossRefGoogle Scholar
  57. 57.
    Ueno T, Toi M, Saji H, Muta M, Bando H, Kuroi K, Koike M, Inadera H, Matsushima K (2000) Significance of macrophage chemoattractant protein-1 in macrophage recruitment, angiogenesis and survival in human breast cancer. Clin Cancer Res 6: 3282–3289PubMedGoogle Scholar
  58. 58.
    Marumo T, Schini-Kerth VB, Busse R (1999) Vascular endothelial growth factor activates nuclear factor-kappaB and induces monocyte chemoattractant protein-1 in bovine retinal endothelial cells. Diabetes 48: 1131–1137PubMedCrossRefGoogle Scholar
  59. 59.
    Lakshminarayanan V, Lewallen M, Frangogiannis NG, Evans AJ, Wedin KE, Michael LH, Entman ML (2001) Reactive oxygen intermediates induce monocyte chemotactic protein-1 in vascular endothelium after brief ischemia. Am J Pathol 159: 1301–1311PubMedGoogle Scholar
  60. 60.
    Low QE, Drugea IA, Duffner LA, Quinn DG, Cook DN, Rollins BJ, Kovacs EJ, DiPietro LA (2001) Wound healing in Mip-1alpha(-/-) and Mcp-1(-/-) mice. Am J Pathol 159: 457–463PubMedGoogle Scholar
  61. 61.
    Humphries J, McGuinness CL, Smith A, Waltham M, Poston R, Burnand KG (1999) Monocyte chemotactic protein-1 (MCP-1) accelerates the organization and resolution of venous thrombi. J Vasc Surg 30: 894–899PubMedCrossRefGoogle Scholar
  62. 62.
    Koch AE, Polverini PJ, Kunkel SL, Harlow LA, DiPietro LA, Elner VM, Elner SG, Strieter RM (1992) Interleukin-8 as a macrophage-derived mediator of angiogenesis. Science 258: 1798–1801PubMedCrossRefGoogle Scholar
  63. 63.
    Wakefield TW, Linn MJ, Henke PK, Kadell AM, Wilke CA, Wrobleski SK, Sarkar M, Burdic MD, Myers DD, Strieter RM (1999) Neovascularization during venous thrombosis organization: a preliminary study. J Vasc Surg 30: 885–892PubMedCrossRefGoogle Scholar
  64. 64.
    Hu DE, Hori Y, Fan TP (1993) Interleukin-8 stimulates angiogenesis in rats. Inflammation 17: 135–143PubMedCrossRefGoogle Scholar
  65. 65.
    Petzelbauer P, Watson CA, Pfau SE, Pober JS (1995) IL-8 and angiogenesis: Evidence that human endothelial cells lack receptors and do not respond to IL-8 in vitro. Cytokine 7: 267–272PubMedCrossRefGoogle Scholar
  66. 66.
    Boisvert WA, Santiago R, Curtiss LK, Terkeltaub RA (1998) A leukocyte homologue of the IL-8 receptor CXCR-2 mediates the accumulation of macrophages in atherosclerotic lesions of LDL receptor-deficient mice. J Clin Invest 101: 353–363PubMedCrossRefGoogle Scholar
  67. 67.
    Bando H, Toi M (2000) Tumor angiogenesis, macrophages and cytokines. Adv Exp Med Biol 476: 267–284PubMedGoogle Scholar
  68. 68.
    Bussolino F, Colotta F, Bocchietto E, Guglielmetti A, Mantovani A (1993) Recent developments in the cell biology of granulocyte-macrophage colony-stimulating factor and granulocyte colonystimulating factor: Activities on endothelial cells. Int J Clin Lab Res 23: 8–12PubMedCrossRefGoogle Scholar
  69. 69.
    Schreiber AB, Winkler ME, Derynck R (1986) Transforming growth factor-alpha: a more potent angiogenic mediator than epidermal growth factor. Science 232: 1250–1253PubMedCrossRefGoogle Scholar
  70. 70.
    Kitamura K, Kasuya K, Tsuchida A, Mimuro A, Inoue K, Aoki T, Aoki T, Koyanagi Y (2003) Immunohistochemical analysis of transforming growth factor beta in gallbladder cancer. Oncol Rep 10: 327–332PubMedGoogle Scholar
  71. 71.
    Tuxhorn JA, McAlhany SJ, Yang F, Dang TD, Rowley DR (2002) Inhibition of transforming growth factor-beta activity decreases angiogenesis in a human prostate cancer-reactive stroma xenograft model. Cancer Res 62: 6021–6025PubMedGoogle Scholar
  72. 72.
    Mornex JF, Martinet Y, Yamauchi K, Bitterman PB, Grotendorst GR, Chytil-Weir A, Martin GR, Crystal RG (1986) Spontaneous expression of the c-sis gene and release of a platelet-derived growth factorlike molecule by human alveolar macrophages. J Clin Invest 78: 61–66PubMedCrossRefGoogle Scholar
  73. 73.
    Li H, Fredriksson L, Li X, Eriksson U (2003) PDGF-D is a potent transforming and angiogenic growth factor. Oncogene 22: 1501–1510PubMedCrossRefGoogle Scholar
  74. 74.
    De Marchis F, Ribatti D, Giampietri C, Lentini A, Faraone D, Scoccianti M, Capogrossi MC, Facchiano A (2002) Platelet-derived growth factor inhibits basic fibroblast growth factor angiogenic properties in vitro and in vivo through its alpha receptor. Blood 99: 2045–2053PubMedCrossRefGoogle Scholar
  75. 75.
    Amano H, Hayashi I, Endo H, Kitasato H, Yamashina S, Maruyama T, Kobayashi M, Satoh K, Narita M, Sugimoto Y et al. (2003) Host prostaglandin E(2)-EP3 signaling regulates tumor-associated angiogenesis and tumor growth. J Exp Med 197: 221–232PubMedCrossRefGoogle Scholar
  76. 76.
    DiPietro LA, Polverini PJ (1993) Angiogenic macrophages produce the angiogenic inhibitor thrombospondin 1. Am J Pathol 143: 678–684PubMedGoogle Scholar
  77. 77.
    Cornelius LA, Nehring LC, Harding E, Bolanowski M, Welgus HG, Kobayashi DK, Pierce RA, Shapiro SD (1998) Matrix metalloproteinases generate angiostatin: Effects on neovascularization. J Immunol 161: 6845–6852PubMedGoogle Scholar
  78. 78.
    Gorrin-Rivas MJ, Arii S, Furutani M, Mizumoto M, Mori A, Hanaki K, Maeda M, Furuyama H, Kondo Y, Imamura M (2000) Mouse macrophage metalloelastase gene transfer into a murine melanoma suppresses primary tumor growth by halting angiogenesis. Clin Cancer Res 6: 1647–1654PubMedGoogle Scholar
  79. 79.
    O’Connor DS, Schechner JS, Adida C, Mesri M, Rothermel AL, Li F, Nath AK, Pober JS, Altieri DC (2000) Control of apoptosis during angiogenesis by survivin expression in endothelial cells. Am J Pathol 156: 393–398Google Scholar
  80. 80.
    Choi ME, Ballermann BJ (1995) Inhibition of capillary morphogenesis and associated apoptosis by dominant negative mutant transforming growth factor-beta receptors. J Biol Chem 270: 21144–21150PubMedCrossRefGoogle Scholar
  81. 81.
    Kaplan HJ, Leibole MA, Tezel T, Ferguson TA (1999) Fas ligand (CD95 ligand) controls angiogenesis beneath the retina. Nat Med 5: 292–297PubMedCrossRefGoogle Scholar
  82. 82.
    Lambooij AC, Kliffen M, Mooy CM, Kuijpers RW (2001) Role of Fas-ligand in age-related maculopathy not established. Am J Ophthalmol 132: 437–439PubMedCrossRefGoogle Scholar
  83. 83.
    Barreiro R, Schadlu R, Herndon J, Kaplan HJ, Ferguson TA (2003) The role of Fas-FasL in the development and treatment of ischemic retinopathy. Invest Ophthalmol Visual Sci 44: 1282–1286CrossRefGoogle Scholar
  84. 84.
    Biancone L, Martino AD, Orlandi V, Conaldi PG, Toniolo A, Camussi G (1997) Development of inflammatory angiogenesis by local stimulation of Fas in vivo. J Exp Med 186: 147–152PubMedCrossRefGoogle Scholar
  85. 85.
    Meyer GT, Matthias LJ, Noack L, Vadas MA, Gamble JR (1997) Lumen formation during angiogenesis in vitro involves phagocytic activity, formation and secretion of vacuoles, cell death and capillary tube remodelling by different populations of endothelial cells. Anat Rec 249: 327–340PubMedCrossRefGoogle Scholar
  86. 86.
    Diez-Roux G, Argilla M, Makarenkova H, Ko K, Lang RA (1999) Macrophages kill capillary cells in G1 phase of the cell cycle during programmed vascular regression. Development 126: 2141–2147PubMedGoogle Scholar
  87. 87.
    Shapiro SD (1998) Matrix metalloproteinase degradation of extracellular matrix: Biological consequences. Curr Opin Cell Biol 10: 602–608PubMedCrossRefGoogle Scholar
  88. 88.
    Cox G, O’Byrne KJ (2001) Matrix metalloproteinases and cancer. Anticancer Res 21: 4207–4219PubMedGoogle Scholar
  89. 89.
    Heissig B, Hattori K, Friedrich M, Rafii S, Werb Z (2003) Angiogenesis: Vascular remodeling of the extracellular matrix involves metalloproteinases. Curr Opin Hematol 10: 136–141PubMedCrossRefGoogle Scholar
  90. 90.
    Shapiro SD (1999) Diverse roles of macrophage matrix metalloproteinases in tissue destruction and tumor growth. Thromb Haemost 82: 846–849PubMedGoogle Scholar
  91. 91.
    Werb Z, Vu TH, Rinkenberger JL, Coussens LM (1999) Matrix-degrading proteases and angiogenesis during development and tumor formation. APMIS 107: 11–18PubMedCrossRefGoogle Scholar
  92. 92.
    Werb Z, Bainton DF, Jones PA (1980) Degradation of connective tissue matrices by macrophages. III. Morphological and biochemical studies on extracellular, pericellular, and intracellular events in matrix proteolysis by macrophages in culture. J Exp Med 152: 1537–1553PubMedCrossRefGoogle Scholar
  93. 93.
    Murphy G, Gavrilovic J (1999) Proteolysis and cell migration: creating a path? Curr Opin Cell Biol 11: 614–621PubMedCrossRefGoogle Scholar
  94. 94.
    Madlener M, Parks WC, Werner S (1998) Matrix metalloproteinases (MMPs) and their physiological inhibitors (TIMPs) are differentially expressed during excisional skin wound repair. Exp Cell Res 242: 201–210PubMedCrossRefGoogle Scholar
  95. 95.
    Nicosia RF, McCormick JF, Bielunas J (1984) The formation of endothelial webs and channels in plasma clot culture. Scan Electron Microsc 793–799Google Scholar
  96. 96.
    Nehls V, Herrmann R, Huhnken M (1998) Guided migration as a novel mechanism of capillary network remodeling is regulated by basic fibroblast growth factor. Histochem Cell Biol 109: 319–329PubMedCrossRefGoogle Scholar
  97. 97.
    Moldovan NI, Goldschmidt-Clermont PJ, Parker-Thornburg J, Shapiro SD, Kolattukudy PE (2000) Contribution of monocytes/macrophages to compensatory neovascularization: the drilling of metalloelastase-positive tunnels in ischemic myocardium. Circ Res 87: 378–384PubMedGoogle Scholar
  98. 98.
    Kolattukudy PE, Quach T, Bergese S, Breckenridge S, Hensley J, Altschuld R, Gordillo G, Klenotic S, Orosz C, Parker-Thornburg J (1998) Myocarditis induced by targeted expression of the Mcp-1 gene in murine cardiac muscle. Am J Pathol 152: 101–111PubMedGoogle Scholar
  99. 99.
    Martire A, Fernandez B, Buehler A, Strohm C, Schaper J, Zimmermann R, Kolattukudy PE, Schaper W (2003) Cardiac overexpression of monocyte chemoattractant protein-1 in transgenic mice mimics ischemic preconditioning through Sapk/Jnk1/2 activation. Cardiovasc Res 57: 523–534PubMedCrossRefGoogle Scholar
  100. 100.
    Castellucci M, Montesano R (1988) Phorbol ester stimulates macrophage invasion of fibrin matrices. Anat Rec 220: 1–10PubMedCrossRefGoogle Scholar
  101. 101.
    Monet-Kuntz C, Cuvelier A, Sarafan N, Martin JP (1997) Metalloelastase expression in a mouse macrophage cell line—regulation by 4beta-phorbol 12-myristate 13-acetate, lipopolysaccharide and dexamethasone. Eur J Biochem 247: 588–595PubMedCrossRefGoogle Scholar
  102. 102.
    Anghelina M, Schmeisser A, Krishnan P, Moldovan L, Strasser RH, Moldovan NI (2002) Migration of monocytes/macrophages in vitro and in vivo is accompanied by MMP12-dependent tunnels formation and by neo-vascularization. Cold Spring Harb Symp Quant Biol LXVII: 209–215CrossRefGoogle Scholar
  103. 103.
    Nabeshima K, Inoue T, Shimao Y, Kataoka H, Koono M (1999) Cohort migration of carcinoma cells: Differentiated colorectal carcinoma cells move as coherent cell clusters or sheets. Histol Histopathol 14: 1183–1197PubMedGoogle Scholar
  104. 104.
    Simon DI, Ezratty AM, Francis SA, Rennke H, Loscalzo J (1993) Fibrin(ogen) is internalized and degraded by activated human monocytoid cells via Mac-1 (CD11b/CD18): a nonplasmin fibrinolytic pathway. Blood 82: 2414–2422PubMedGoogle Scholar
  105. 105.
    Shipley JM, Wesselschmidt RL, Kobayashi DK, Ley TJ, Shapiro SD (1996) Metalloelastase is Role of monocytes and macrophages in angiogenesis 143 required for macrophage-mediated proteolysis and matrix invasion in mice. Proc Natl Acad Sci USA 93: 3942–3946PubMedCrossRefGoogle Scholar
  106. 106.
    Curci JA, Liao S, Huffman MD, Shapiro SD, Thompson RW (1998) Expression and localization of macrophage elastase (matrix metalloproteinase-12) in abdominal aortic aneurysms. J Clin Invest 102: 1900–1910PubMedCrossRefGoogle Scholar
  107. 107.
    Hinek A, Boyle J, Rabinovitch M (1992) Vascular smooth muscle cell detachment from elastin and migration through elastic laminae is promoted by chondroitin sulfate-induced “shedding” of the 67-kDa cell surface elastin binding protein. Exp Cell Res 203: 344–353PubMedCrossRefGoogle Scholar
  108. 108.
    Gunsilius E, Duba HC, Petzer AL, Kahler CM, Grunewald K, Stockhammer G, Gabl C, Dirnhofer S, Clausen J, Gastl G (2000) Evidence from a leukaemia model for maintenance of vascular endothelium by bone-marrow-derived endothelial cells. Lancet 355: 1688–1691PubMedCrossRefGoogle Scholar
  109. 109.
    Grant MB, May WS, Caballero S, Brown GA, Guthrie SM, Mames RN, Byrne BJ, Vaught T, Spoerri PE, Peck AB, Scott EW (2002) Adult hematopoietic stem cells provide functional hemangioblast activity during retinal neovascularization. Nat Med 8: 607–612PubMedCrossRefGoogle Scholar
  110. 110.
    Feigl W, Susani M, Ulrich W, Matejka M, Losert U, Sinzinger H (1985) Organisation of experimental thrombosis by blood cells. Evidence of the transformation of mononuclear cells into myofibroblasts and endothelial cells. Virchows Arch A Pathol Anat Histopathol 406: 133–148PubMedCrossRefGoogle Scholar
  111. 111.
    Leu HJ, Feigl W, Susani M (1987) Angiogenesis from mononuclear cells in thrombi. Virchows Arch A Pathol Anat Histopathol 411: 5–14PubMedCrossRefGoogle Scholar
  112. 112.
    Leu HJ, Feigl W, Susani M, Odermatt B (1988) Differentiation of mononuclear blood cells into macrophages, fibroblasts and endothelial cells in thrombus organization. Exp Cell Biol 56: 201–210PubMedGoogle Scholar
  113. 113.
    Rafii S (2000) Circulating endothelial precursors: Mystery, reality, and promise. J Clin Invest 105: 17–19PubMedCrossRefGoogle Scholar
  114. 114.
    Murayama T, Asahara T (2002) Bone marrow-derived endothelial progenitor cells for vascular regeneration. Curr Opin Mol Ther 4: 395–402PubMedGoogle Scholar
  115. 115.
    Moldovan NI (2002) Role of monocytes and macrophages in adult angiogenesis: A light at the tunnel’s end. J Hematother Stem Cell Res 11: 179–194PubMedCrossRefGoogle Scholar
  116. 115b.
    Bendeck MP (2000) Mining the myocardium with macrophage drills: A novel mechanism for revascularization. Circ Res 87: 341–343PubMedGoogle Scholar
  117. 116.
    Wu MH, Shi Q, Wechezak AR, Clowes AW, Gordon IL, Sauvage LR (1995) Definitive proof of endothelialization of a Dacron arterial prosthesis in a human being. J Vasc Surg 21: 862–867PubMedCrossRefGoogle Scholar
  118. 117.
    Ishibashi T, Miller H, Orr G, Sorgente N, Ryan SJ (1987) Morphologic observations on experimental subretinal neovascularization in the monkey. Invest Ophthalmol Visual Sci 28: 1116–1130Google Scholar
  119. 118.
    Moldovan NI (2003) Tissular insemination of progenitor endothelial cells: The problem, and a suggested solution. Adv Exp Med Biol 522: 99–113PubMedGoogle Scholar
  120. 119.
    Tepper OM, Murayama T, Hanlon HD, Kalka C (2002) Therapeutic neovascularization as a novel approach to thrombus recanalization and resolution. Circulation 106: II-65-CrossRefGoogle Scholar
  121. 120.
    Singh I, Burnand KG, Collins M, Luttun A, Collen D, Boelhouwer B, Smith A (2003) Failure of thrombus to resolve in urokinase-type plasminogen activator gene-knockout mice: Rescue by normal bone marrow-derived cells. Circulation 107: 869–875PubMedCrossRefGoogle Scholar
  122. 121.
    Dible HJ (1958) Organization and canalization in arterial thrombosis. J Pathol Bacteriol LXXV: 1–7CrossRefGoogle Scholar
  123. 122.
    Flanc C (1968) An experimental study of the recanalization of arterial and venous thrombi. Br J Surg 55: 519–524PubMedCrossRefGoogle Scholar
  124. 123.
    Davies MJ, Ballantine SJ, Robertson WB, Woolf N (1975) The ultrastructure of organising experimental mural thrombi in the pig aorta. J Pathol 117: 75–81PubMedCrossRefGoogle Scholar
  125. 124.
    Schwartz SM (1999) The definition of cell type. Circ Res 84: 1234–1235PubMedGoogle Scholar
  126. 125.
    Hume DA, Ross IL, Himes SR, Sasmono RT, Wells CA, Ravasi T (2002) The mononuclear phagocyte system revisited. J Leukocyte Biol 72: 621–627PubMedGoogle Scholar
  127. 126.
    Ziegler-Heitbrock HW, Fingerle G, Strobel M, Schraut W, Stelter F, Schutt C, Passlick B, Pforte A (1993) The novel subset of CD14+/CD16+ blood monocytes exhibits features of tissue macrophages. Eur J Immunol 23: 2053–2058PubMedCrossRefGoogle Scholar
  128. 127.
    Tosh D, Slack JM (2002) How cells change their phenotype. Nat Rev Mol Cell Biol 3: 187–194PubMedCrossRefGoogle Scholar
  129. 128.
    Tao H, Ma DD (2003) Evidence for transdifferentiation of human bone marrow-derived stem cells: Recent progress and controversies. Pathology 35: 6–13PubMedCrossRefGoogle Scholar
  130. 129.
    Schmeisser A, Strasser RH (2002) Phenotypic overlap between hematopoietic cells with suggested angioblastic potential and vascular endothelial cells. J Hematother Stem Cell Res 11: 69–79PubMedCrossRefGoogle Scholar
  131. 130.
    Campbell JH, Efendy JL, Campbell GR (1999) Novel vascular graft grown within recipient’s own peritoneal cavity. Circ Res 85: 1173–1178PubMedGoogle Scholar
  132. 131.
    Moldovan NI, Havemann K (2002) Transdifferentiation, a potential mechanism for covering vascular grafts grown within recipient’s peritoneal cavity with endothelial-like cells. Circ Res 91: e1-PubMedCrossRefGoogle Scholar
  133. 132.
    Zhou Y, Fisher SJ, Janatpour M, Genbacev O, Dejana E, Wheelock M, Damsky CH (1997) Human cytotrophoblasts adopt a vascular phenotype as they differentiate. A strategy for successful endovascular invasion? J Clin Invest 99: 2139–2151PubMedCrossRefGoogle Scholar
  134. 133.
    McDonald DM, Foss AJ (2000) Endothelial cells of tumor vessels: Abnormal but not absent. Cancer Metastasis Rev 19: 109–120PubMedCrossRefGoogle Scholar
  135. 134.
    Maniotis AJ, Folberg R, Hess A, Seftor EA, Gardner LM, Pe’er J, Trent JM, Meltzer PS, Hendri MJ (1999) Vascular channel formation by human melanoma cells in vivo and in vitro: vasculogenic mimicry. Am J Pathol 155: 739–752PubMedGoogle Scholar
  136. 135.
    McDonald DM, Munn L, Jain RK (2000) Vasculogenic mimicry: How convincing, how novel and how significant? Am J Pathol 156: 383–388PubMedGoogle Scholar
  137. 136.
    Maniotis AJ, Chen X, Garcia C, DeChristopher PJ, Wu D, Pe’er J, Folberg R (2002) Control of melanoma morphogenesis, endothelial survival, and perfusion by extracellular matrix. Lab Invest 82: 1031–1043PubMedGoogle Scholar
  138. 137.
    Burri PH, Djonov V (2002) Intussusceptive angiogenesis—The alternative to capillary sprouting. Mol Aspects Med 23: 1–27CrossRefGoogle Scholar
  139. 138.
    Drake CJ, Little CD (1999) VEGF and vascular fusion: Implications for normal and pathological vessels. J Histochem Cytochem 47: 1351–1356PubMedGoogle Scholar
  140. 139.
    Boardman KC, Swartz MA (2003) Interstitial flow as a guide for lymphangiogenesis. Circ Res 92: 801–808PubMedCrossRefGoogle Scholar
  141. 140.
    Asahara T, Murohara T, Sullivan A, Silver M, van der ZR, Li T, Witzenbichler B, Schatteman G, Isner JM (1997) Isolation of putative progenitor endothelial cells for angiogenesis. Science 275: 964–967PubMedCrossRefGoogle Scholar
  142. 141.
    Harraz M, Jiao C, Hanlon HD, Hartley RS, Schatteman GC (2001) Cd34(-) blood-derived human endothelial cell progenitors. Stem Cells 19: 304–312PubMedCrossRefGoogle Scholar
  143. 142.
    Schatteman GC, Hanlon HD, Jiao C, Dodds SG, Christy BA (2000) Blood-derived angioblasts accelerate blood-flow restoration in diabetic mice. J Clin Invest 106: 571–578PubMedCrossRefGoogle Scholar
  144. 143.
    Iba O, Matsubara H, Nozawa Y, Fujiyama S, Amano K, Mori Y, Kojima H, Iwasaka T (2002) Angiogenesis by implantation of peripheral blood mononuclear cells and platelets into ischemic limbs. Circulation 106: 2019–2025PubMedCrossRefGoogle Scholar
  145. 144.
    Orlic D, Kajstura J, Chimenti S, Jakoniuk I, Anderson SM, Li B, Pickel J, McKay R, Nadal-Ginard B, Bodine DM et al. (2001) Bone marrow cells regenerate infarcted myocardium. Nature 410: 701–705PubMedCrossRefGoogle Scholar
  146. 145.
    Kawamoto A, Tkebuchava T, Yamaguchi J, Nishimura H, Yoon YS, Milliken C, Uchida S, Masuo O, Iwaguro H, Ma H et al. (2003) Intramyocardial transplantation of autologous endothelial progenitor cells for therapeutic neovascularization of myocardial ischemia. Circulation 107: 461–468PubMedCrossRefGoogle Scholar
  147. 146.
    Fernandez PB, Lucibello FC, Gehling UM, Lindemann K, Weidner N, Zuzarte ML, Adamkiewicz J, Elsasser HP, Muller R, Havemann K (2000) Endothelial-like cells derived from human CD14 positive monocytes. Differentiation 65: 287–300CrossRefGoogle Scholar
  148. 147.
    Vasa M, Fichtlscherer S, Aicher A, Adler K, Urbich C, Martin H, Zeiher AM, Dimmeler S (2001) Number and migratory activity of circulating endothelial progenitor cells inversely correlate with risk factors for coronary artery disease. Circ Res 89: E1–E7PubMedCrossRefGoogle Scholar
  149. 148.
    Kawamoto A, Gwon HC, Iwaguro H, Yamaguchi JI, Uchida S, Masuda H, Silver M, Ma H, Kearney M, Isner JM, Asahara T (2001) Therapeutic potential of ex vivo expanded endothelial progenitor cells for myocardial ischemia. Circulation 103: 634–637PubMedGoogle Scholar
  150. 149.
    Schmeisser A, Garlichs CD, Zhang H, Eskafi S, Graffy C, Ludwig J, Strasser RH, Daniel WG (2001) Monocytes coexpress endothelial and macrophagocytic lineage markers and form cordlike structures in Matrigel under angiogenic conditions. Cardiovasc Res 49: 671–680PubMedCrossRefGoogle Scholar
  151. 150.
    Rehman J, Li J, Orschell CM, March KL (2003) Peripheral blood “endothelial progenitor cells” are derived from monocyte/macrophages and secrete angiogenic growth factors. Circulation 107: 1164–1169PubMedCrossRefGoogle Scholar
  152. 151.
    Burger PE, Coetzee S, McKeehan WL, Kan M, Cook P, Fan Y, Suda T, Hebbel RP, Novitzky N, Muller WA, Wilson EL (2002) Fibroblast growth factor receptor-1 is expressed by endothelial progenitor cells. Blood 100: 3527–3535PubMedCrossRefGoogle Scholar
  153. 152.
    Zhao Y, Glesne D, Huberman E (2003) A human peripheral blood monocyte-derived subset acts as pluripotent stem cells. Proc Natl Acad Sci USA 100: 2426–2431PubMedCrossRefGoogle Scholar
  154. 153.
    Nakul-Aquaronne D, Bayle J, Frelin C (2003) Coexpression of endothelial markers and CD14 by cytokine mobilized CD34(+) cells under angiogenic stimulation. Cardiovasc Res 57: 816–823PubMedCrossRefGoogle Scholar
  155. 154.
    Yamaguchi J, Kusano KF, Masuo O, Kawamoto A, Silver M, Murasawa S, Bosch-Marce M, Masuda H, Losordo DW, Isner JM, Asahara T (2003) Stromal cell-derived factor-1 effects on ex vivo expanded endothelial progenitor cell recruitment for ischemic neovascularization. Circulation 107: 1322–1328PubMedCrossRefGoogle Scholar

Copyright information

© Birkhäuser Verlag/Switzerland 2005

Authors and Affiliations

  • Leni Moldovan
    • 1
  • Nicanor I. Moldovan
    • 1
  1. 1.Dorothy M. Davis Heart and Lung Research InstituteThe Ohio State UniversityColumbusUSA

Personalised recommendations