Arterialization, coronariogenesis and arteriogenesis

  • Borja Fernández
Part of the Experientia Supplementum book series (EXS)


Smooth Muscle Cell Fibroblast Growth Factor Left Coronary Artery Collateral Artery Coronary Artery Anomaly 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Owens GK (1995) Regulation of differentiation of vascular smooth muscle cells. Physiol Rev 75: 487–517PubMedGoogle Scholar
  2. 2.
    Thayer JM, Meyers K, Giachelli CM, Schawartz SM (1995) Formation of the arterieal media during vascular development. Cell Mol Biol Res. 41(4): 251–262PubMedGoogle Scholar
  3. 3.
    Folkman J, D’Amore PA (1996) Blood vessel formation: what is its molecular basis? Cell 87: 1153–1155PubMedCrossRefGoogle Scholar
  4. 4.
    Bondjers C, Kalen M, Hellstrom M, Scheidl S, Abramsson A, Renner O, Lindahl P, Cho H, Kehrl J, Betsholtz C (2003) Transcription profiling of platelet-derived growth factor-B-deficient mouse embryos identifies RGS5 as a novel marker for pericytes and vascular smooth muscle cells. Am J Pathol 162(3): 721–729PubMedCrossRefGoogle Scholar
  5. 5.
    Dumond DJ, Yamaguchi TP, Conion RA, Rossant J, Breiyman ML (1992) Tek, a novel tyrosine kinase gene located on mouse chromosome 4, is expressed in endothelial cells and their presumptive precursors. Oncogene 7: 1471–1480Google Scholar
  6. 6.
    Davis S, Aldrich TH, Jones PF, Acheson A, Compton DL, Jain V, Ryan TE, Bruno J, Radziejewsk C, Maisonpierre PC et al. (1996) Isolation of angiopoietin-1, a ligand for the TIE2 receptor, by secretion-trap expression cloning. Cell 87(7): 1161–1169PubMedCrossRefGoogle Scholar
  7. 7.
    Suri C, Jones PF, Patan S, Bartunkova S, Maisionpierre PC, Davis S, Sato TN, Yankopoulos GD (1996) Requisite role of angiopoietin-1, a ligand for the TIE2 receptor, during embryonic angiogenesis. Cell 87:(7): 1171–1180PubMedCrossRefGoogle Scholar
  8. 8.
    Vikkula M, Boon LM, Carraway III KL, Calvert JT, Diamonti AJ, Goumnerov B, Oasyk KA, Marchuk DA, Warman ML, Cantley LC, Mulliken JB et al. (1996) Vascular dysmorphogenesis caused by an activating mutation in the receptor tyrosine kinase TIE2. Cell 87(7): 1181–1190PubMedCrossRefGoogle Scholar
  9. 9.
    Wang X, Zheng W, Christensen LP, Tomanek RJ (2002) DITPA stimulates bFGF, VEGF, angiopoietin, and Tie-2 and facilitates coronary arteriolar growth. Am J Physiol-Heart Circ Physiol 284: H613–H618PubMedGoogle Scholar
  10. 10.
    Leveen P, Pekny M, Gebre-Medhin S, Swolin B, Larsson E, Betsholtz C (1994) Mice deficient for PDGF B show renal, cardiovascular, and hematological abnormalities. Gene Dev 8: 1875–1887PubMedCrossRefGoogle Scholar
  11. 11.
    Soriano P (1994) Abnormal kidney development and hematological disorders in PDGF betareceptor mutant mice. Gene Dev 8: 1888–1896PubMedCrossRefGoogle Scholar
  12. 12.
    Carmeliet P, Mackman N, Moons L, Luther T, Gressens P, Van Vlaenderen I, Demunck H, Kasper M, Breier G, Evard P et al. (1996) Role of tissue factor in embryonic blood vessel development. Nature 383: 73–75PubMedCrossRefADSGoogle Scholar
  13. 13.
    Dickson MC, Martin JS, Cousins FM, Kulkarni AB, Karlsson S, Akhurst RJ (1995) Defective haematopoiesis and vasculogenesis in transforming growth factor-beta 1 knock out mice. Development 121: 1845–1854PubMedGoogle Scholar
  14. 14.
    Conway EM, Collen D, Carmeliet P (2001) Molecular mechanisms of blood vessel growth. Cardiovasc Res 49: 507–521PubMedCrossRefGoogle Scholar
  15. 15.
    Gorski DH, Walsh K (2001) Control of Vascular Cell Differentiation by Homeobox Transcription Factors. Circ Res 88: 7–8PubMedGoogle Scholar
  16. 16.
    Shima DT, Mailhos C (2000) Vascular developmental biology: getting nervous. Curr Opin Genet Develop 10: 536–542CrossRefGoogle Scholar
  17. 17.
    Cserjesi P, Olson EN (1991) Myogenin induces the myocyte-specific enhancer binding factor MEF-2 independently of other muscle-specific gene products. Mol Cell Biol 11: 4854–4862PubMedGoogle Scholar
  18. 18.
    Davis RL, Weintraub H, Lassar AB (1987) Expression of a single transfected cDNA converts fibroblasts to myoblasts. Cell 51: 987–1000PubMedCrossRefGoogle Scholar
  19. 19.
    Edmonson DG, Olson EN (1989) A gene with homology to the myc similariry region of MyoDI is expressed during myogenesis and is sufficient to activate muscle differentiation program. Gene Dev 3: 628–640CrossRefGoogle Scholar
  20. 20.
    Tapscott SJ, Davis RL, Thayer MJ, Cheng PF, Weintraub H, Lassar AB (1988) MyoD1: a nuclear phosphoprotein requiring a Myc homology region to convert fibroblasts to myoblasts. Science 242: 405–411PubMedADSCrossRefGoogle Scholar
  21. 21.
    Olson EN (1993) Regulation of muscle transcription by the MyoD family. The heart of the matter. Circ Res 72: 1–6PubMedGoogle Scholar
  22. 22.
    Weintraub HR, Davis R, Tapscott S, Thayer M, Krause M, Benetzra R, Blackwell TK, Turner D Rupp R, Hollenberg S (1991) The MyoD gene family: nodal point during specification of the muscle lineage. Science 251: 761–766PubMedADSCrossRefGoogle Scholar
  23. 23.
    Le Lievre CS, Le Douarin NM (1975) Mesenchymal derivatives of the neural crest: analysis of chimaeric quail and chick embryos. J Embryol Exp Morphol 34: 125–154PubMedGoogle Scholar
  24. 24.
    DeRuiter MC, Poelmann RE, VanMunsteren JC, Mironov V, Marwald RR, Gittenberger-de Groot AC (1997) Embryonic endothelial cells transdifferentiate into mesenchymal cells expressing smooth muscle actins in vivo and in vitro. Circ Res 80: 444–451PubMedGoogle Scholar
  25. 25.
    Poelmann RE, Gittenberger-de Groot AC, Mentink MMT, Bokenkamp R, Hogers B (1993) Development of the cardiac coronary endothelium, studies with antiendothelial antibodies, in chicken-quail chimeras. Circ Res 73: 559–568PubMedGoogle Scholar
  26. 26.
    Vrancken Peeters M-PFM, Gittenberger-de Groot AC, Mentink MMT, Hungerford JE, Little CD, Poelmann RE (1997) Differences in development of coronary arteries and veins. Cardiovasc Res 36: 101–110PubMedCrossRefGoogle Scholar
  27. 27.
    Ekblom P, Sariola H, Karkinen-Jaaskelainen M, Saxen L (1982) The origin of the glomerular endothelium. Cell. Differ. 11: 35–39PubMedCrossRefGoogle Scholar
  28. 28.
    Rosenquist TH, McCoy JR, Waldo K, Kirby ML (1988) Origin and propagation of elastogenesis in the cardiovascular system. Anat Rec 221: 860–871PubMedCrossRefGoogle Scholar
  29. 29.
    Rosenquist TH, Beall AC, Modis L, Fishman R (1990) Impaired elastic matrix development in the great arteries after ablation of the cardiac neural crest. Anat Rec 226: 347–359PubMedCrossRefGoogle Scholar
  30. 30.
    Gadson PF, Rossignol C, McCoy J, Rosenquist T (1993) Expression of elastin, smooth muscle alpha-actin, and c-Jun as a function of the embryonic lineage of vascular smooth muscle cells. In vitro Cell Dev Biol 29A: 773–781CrossRefGoogle Scholar
  31. 31.
    Rosenquist TH, Fray-Gavalas C, Waldo K, Beall AC (1990) Development of the musculoelastic septation complex in the avian truncus arteriosus. Ann N Y Acad Sci 189(4): 339–356Google Scholar
  32. 32.
    Muñoz-Chapuli R, Macias D, Ramos C, Fernandez B, Sans-Coma V (1997) Development of the epicardium in the dogfish (Scyliorhinus canicula). Acta Zool 78: 39–46CrossRefGoogle Scholar
  33. 33.
    Bernanke DH, Velkey JM (2002) Development of the coronary blood supply: changing concepts and current ideas. Anat Rec 269: 198–208PubMedCrossRefGoogle Scholar
  34. 34.
    Mikawa T, Gourdie RG (1996) Pericardial mesoderm generates a population of coronary smooth muscle cells migrating into the heart along with ingrowth of the epicardial organ. Dev Biol 174: 221–232PubMedCrossRefGoogle Scholar
  35. 35.
    Dettman RW, Denetclaw W, Ordahl CP, Bristow J (1998) Common origin of coronary vascular smooth muscle cells, perivascular fibroblasts and intermyocardial fibroblasts in the avian heart. Dev Biol 193: 169–181PubMedCrossRefGoogle Scholar
  36. 36.
    Reese De, Zavaljevski M, Streiff NL, Bader D (1999) bves: a novel gene expressed during coronary blood vessel development. Dev Biol 209: 169–171CrossRefGoogle Scholar
  37. 37.
    Durán AC, Arqué JM, Sans-Coma V, Fernández B, De Vega NG (1998) Severe congenital stenosis of the left coronary artery ostium and its possible pathogenesis according to the coronary artery ingrowth theory. Cardiovasc Pathol 7: 261–266CrossRefGoogle Scholar
  38. 38.
    Sans-Coma V, Durán AC, Fernández B, Fernández MC, López D, Arqué JM (1999) Corornary artery anomalies and bicuspid aortic valve. In: P Angelini (ed.): Coronary artery anomalies: a comprehensive approach. Lippincott Williams and Willkins, 17–25Google Scholar
  39. 39.
    Sans-Coma V, Arqué JM, Durán AC, Cardo M, Fernández B (1991) Coronary artery anomalies and bicuspid aortic valves in the Syrian hamster. Basic Res Cardiol 86: 148–153PubMedCrossRefGoogle Scholar
  40. 40.
    Cardo M, Fernández B, Durán AC, Arqué JM, Franco D, Sans-Coma V (1994) Anomalous origin of the left coronary artery from the pulmonary trunk and its relationship with the morphology of the cardiac semilunar valves in Syrian hamsters. Basic Res Cardiol 89: 94–99PubMedCrossRefGoogle Scholar
  41. 41.
    Waldo KL, Kumiski DH, Kirby ML (1994) Association of the cardiac neural crest with the development of the coronary arteries in the chick embryo. Anat Rec 239: 315–331PubMedCrossRefGoogle Scholar
  42. 42.
    Gittenberger-de Groot AC, Bartelings MM, Oddens JR, Kirby ML, Poelmann RE (1995) Coronary artery development and neural crest. In: EB Clark, RR Markwald, A Takao (eds): Developmental mechanisms of heart disease. Futura Publishing, Armonk, NY, 291–294Google Scholar
  43. 43.
    Hood LC, Rosenquist TH (1992) Coronary artery development in the chick: Origin and deployment of smooth muscle cells, and the effects of neural crest ablation. Anat Rec 234: 291–300PubMedCrossRefGoogle Scholar
  44. 44.
    Mukouyama YS, Shin D, Britsch S, Taniguchi M, Anderson DJ (2002) Sensory nerves determine the pattern of the arterial differentiation and blood vessel branching in the skin. Cell 109(6): 693–705PubMedCrossRefGoogle Scholar
  45. 45.
    Bischoff J (1995) Approaches to studying cell adhesion molecules in angiogenesis. Trends Cell Biol 5: 69–73PubMedCrossRefGoogle Scholar
  46. 46.
    Mima T, Ueno H, Fischman DA, Williams LT, Mikawa T (1995) Fibroblast growth factor receptor is required for in vivo cardiac myocyte proliferation at early embryonic stages of heart development. Proc Natl Acad Sci USA 92: 467–471PubMedCrossRefADSGoogle Scholar
  47. 47.
    Slack JMW, Darlington BG, Heath JK, Godsafe SF (1987) Mesoderm induction in early Xenopus embryos by eparin binding growth factors. Nature 326: 197–200PubMedCrossRefADSGoogle Scholar
  48. 48.
    Spirito P, Fu Y-M, Yu Z-X, Epstein SE, Casscells W (1991) Immunohistochemical localization of basic and acidic fibroblast growth factor in the developing rat heart. Circulation 84: 322–332PubMedGoogle Scholar
  49. 49.
    Engelmann GL, Dionne CA, Jaye MC (1993) Acidic fibroblast growth factor and heart development: role in myocyte proliferation and capillary angiogenesis. Circ Res 72: 7–19PubMedGoogle Scholar
  50. 50.
    Patstone G, Pasquale EB, Maher PA (1993) Different members of the fibroblast growth factor receptor family are specific to distinct cell types in the developing chicken embryo. Dev Biol 155: 107–123PubMedCrossRefGoogle Scholar
  51. 51.
    Miller DL, Ortega S, Bashayan O, Basch R, Basilico C (2000) Compensation by fibroblast growth factor 1 (FGF1) does not account for the mild phenotypic defects observed in FGF2-null mice. Mol Cell Biol 20: 2260–2268PubMedCrossRefGoogle Scholar
  52. 52.
    Yamaguchi TP, Rossant J (1995) Fibroblast growth factors in mammalian development. Curr Opin Gen Dev 5: 485–491CrossRefGoogle Scholar
  53. 53.
    Wilkie AO, Morriss-Kay GM, Jones EY, Heath JK (1995) Functions of fibroblast growth factors and their receptors. Curr Biol 5: 500–507PubMedCrossRefGoogle Scholar
  54. 54.
    Fernández B, Buehler A, Wolfram S, Kostin S, Espanion G, Franz WM, Doevendans PA, Schape W, Zimmermann R (2000) Transgenic myocardial overexpression of Fibroblast growth factor-1 increases coronary density and branching. Circ Res 87: 207–213PubMedGoogle Scholar
  55. 55.
    Buehler A, Martire A, Strohm C, Wolfram S, Fernández B, Palmen M, Wehrens X, Doevendan PA, Franz WM, Schaper W, Zimmermann R (2002) Angiogenesis — independent cardioprotection in FGF-1 transgenic mice. Cardiovasc Res 55: 768–777PubMedCrossRefGoogle Scholar
  56. 56.
    Heron MI, Kuo C, Rakusan K (1999) Arteriolar growth in the postnatal rat heart. Microvasc Res 58: 183–186PubMedCrossRefGoogle Scholar
  57. 57.
    Ornitz DM, Itoh N (2001) Fibroblast growth factors. Genome Biol 2(3): 3005.1–3005.12CrossRefGoogle Scholar
  58. 58.
    Jung J, Zheng M, Goldfarb M, Zaret KS (1999) Initiation of mammalian liver development from endoderm by fibroblast growth factors. Science 284: 1998–2003PubMedCrossRefGoogle Scholar
  59. 59.
    Reifers F, Bohli H, Walsh EC, Crossley PH, Stainer DYR, Brand M (1998) Fgf8 is mutated in zebrafish acerebellar mutants and is required fro maintenance of midbrain-hindbrain boundary development and somitogenesis. Development 125: 2381–2395PubMedGoogle Scholar
  60. 60.
    Ohuchi H, Noji S (1999) Fibroblast-growth-factor-induced additional limbs in the study of initiation of limb formation, limb identity, myogenesis, and innervation. Cell Tissue Res 296: 45–56PubMedCrossRefGoogle Scholar
  61. 61.
    Sekine K, Ohuchi H, Fujiwara M, Yamasaki M, Yoshizawa T, Sato T, Yagishita N, Matsui D, Koga Y, Itoh N, Kato S (1999) Fgf10 is essential for limb and lung formation. Nat Genet 21(1): 138–141PubMedCrossRefGoogle Scholar
  62. 62.
    Qiao J, Bush KT, Steer DL, Stuart RO, Sakurai H, Wachsman W, Nigam SK (2001) Multiple fibroblast growth factors support growth of the ureteric bud but have different effects on branching morphogenesis. Mech Develop 109: 123–135CrossRefGoogle Scholar
  63. 63.
    Peters K, Werner S, Liao X, Wert S, Whitsett J, Williams L (1994) Targeted expression of dominant-negative FGF receptor blocks branching morphogenesis and epithelial differentiation of the mouse lung. EMBO J 13: 3296–3301PubMedGoogle Scholar
  64. 64.
    Powers CJ, McLeskey SW, Wellstein A (2000) Fibroblast growth factors, their receptors and signaling. Endocrine-Related. Cancer 7: 165–197Google Scholar
  65. 65.
    Coffin JD, Florkiewicz RZ, Neumann J, Mort-Hopkins T, Dorn GW 2nd Lightfoot P, German R, Howles PN, Kier A, O’Toole BA et al. (1995) Abnormal bone growth and selective translational regulation in basic fibroblast growth factor (FGF-2) transgenic mice. Mol Biol Cell 6(12): 1861–1873PubMedGoogle Scholar
  66. 66.
    Folkman J, Klagsbrun M, Sasse J, Wadzinski M, Ingber D, Vlodavsky I (1988) A heparin-binding angiogenic protein-basic fibroblast growth factor-is stored within basement membrane. Am J Pathol 130: 393–400PubMedGoogle Scholar
  67. 67.
    Schulze-Osthoff K, Risau W, Vollmer E, Sorg C (1990) In situ detection of basic fibroblast growth factor by highly specific antibodies. Am J Pathol 137: 85–92PubMedGoogle Scholar
  68. 68.
    Faux CH, Turnley AM, Epa R, Cappai R, Bartlett PF (2001) Interactions between fibroblast growth factors and Notch regulate neuronal differentiation. J Neurosci 21: 5587–5596PubMedGoogle Scholar
  69. 69.
    Zhong TP, Childs S, Leu JP, Fishman MC (2001) Gridlock signaling pathway fashions the first embryonic artery. Nature 414: 216–220PubMedCrossRefADSGoogle Scholar
  70. 70.
    Adams RH, Klein R (2000) Eph Receptors and Ephrin Ligands: Essential Mediators of Vascular Development. Trends Cardiovasc Med 10: 183–188PubMedCrossRefGoogle Scholar
  71. 71.
    Chen N, Brantley DM, Chen J (2002) The ephrins and Eph receptors in angiogenesis. Cytokine Growth Factor Rev 13: 75–78PubMedCrossRefGoogle Scholar
  72. 72.
    Gale NW, Holland SJ, Valenzuela DM, Flenniken A, Pan L, Ryan TE, Henkemeyer M, Strebhard K, Hirai H, Wilkinson DG et al. (1996) Eph receptors and ligands comprise two major specificity subclasses and are reciprocally compartmentalized during embryogenesis. Neuron 17(1): 9–19PubMedCrossRefGoogle Scholar
  73. 73.
    Wang HU, Chen Z-F, Anderson DJ (1998) Molecular distinction and angiogenic interaction between embryonic arteries and veins revealed by Ephrin-B2 and its receptor Eph-B4. Cell 93: 741–753PubMedCrossRefGoogle Scholar
  74. 74.
    Helish A, Schaper W (2003) Arteriogenesis. The development of collateral arteries. Microcirculation 10: 83–97CrossRefGoogle Scholar
  75. 75.
    Maxwell MP, Hearse DJ, Yellon DM (1987) Species variation in the coronary collateral circulation during regional myocardial ischaemia: a critical determinant of the rate of evolution and extent of myocardial infarction. Cardiovasc Res 21: 737–746PubMedCrossRefGoogle Scholar
  76. 76.
    Price RJ, Owens GK, Skalak TC (1994) Immunohistochemical identification of arteriolar development using markers of smooth muscle differentiation. Evidence that capillary arterialization proceeds from terminal arterioles. Circ Res 75: 520–527PubMedGoogle Scholar
  77. 77.
    Sobin SS, Tremer HM, Hardi JD, Vhiodi HP (1983) Changes in arteriole in acute and chronic hypoxic pulmonary hipertension and revovery in rat. Respirat. Environ Exercise Physiol 55(5): 1445–1455Google Scholar
  78. 78.
    Adair TH, Hang J, Wells ML, Magee FD, Montani J-P (1995) Long-term electrical stimulation of rabbit skeletal muscle increases growth of paired arteries and veins. Am J Physiol 269: H717–H724PubMedGoogle Scholar
  79. 79.
    Price RJ, Skalak TC (1994) Chronic alpha1-adrenergic blockade stimulates terminal and arcade arteriolar development. Am J Physiol 269: H752–H759Google Scholar
  80. 80.
    Price RJ, Skalak TC (1998) Arteriolar remodeling in skeletal muscles of rats exposed to chronic hypoxia. J Vasc Res 35: 238–244PubMedCrossRefGoogle Scholar
  81. 81.
    Shaper W (2001) Therapeutic arteriogenesis has arrived. Circulation 104: 1994–1995Google Scholar

Copyright information

© Birkhäuser Verlag/Switzerland 2005

Authors and Affiliations

  • Borja Fernández
    • 1
  1. 1.Dep. Biologìa Animal, Fac. CienciasUniv. MálagaMálagaSpain

Personalised recommendations