Macrolides and mucus production

  • Kiyoshi Takeyama
Part of the Progress in Inflammation Research book series (PIR)


Epidermal Growth Factor Receptor Neutrophil Elastase Macrolide Antibiotic Mucus Secretion Airway Secretion 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Kudoh S, Azuma A, Yamamoto M, Izumi T, Ando M (1998) Improvement of survival in patients with diffuse panbronchiolitis treated with low-dose erythromycin. Am J Respir Crit Care Med 157: 1829–32PubMedGoogle Scholar
  2. 2.
    Yamamoto M, Kudoh S, Ina Y, Tamura A (1990) Clinical efficacy of erythromycin for patients with diffuse panbronchiolitis — a double blind study. Saishin Igaku 45: 103–8Google Scholar
  3. 3.
    Jaffe A, Bush A (2001) Anti-inflammatory effects of macrolides in lung disease. Pediatr Pulmonol 31: 464–73CrossRefPubMedGoogle Scholar
  4. 4.
    Rubin BK (2002) The pharmacologic approach to airway clearance: mucoactive agents. Respir Care 47: 818–22PubMedGoogle Scholar
  5. 5.
    Majima Y (2002) Mucoactive medications and airway disease. Paediatr Respir Rev 3: 104–9CrossRefPubMedGoogle Scholar
  6. 6.
    Goswami SK, Kivity S, Marom Z (1990) Erythromycin inhibits respiratory glycoconjugate secretion from human airways in vitro. Am Rev Respir Dis 141: 72–8PubMedGoogle Scholar
  7. 7.
    Shimizu T, Shimizu S, Hattori R, Gabazza EC, Majima Y (2003) In vivo and in vitro effects of macrolide antibiotics on mucus secretion in airway epithelial cells. Am J Respir Crit Care Med 168: 581–7CrossRefPubMedGoogle Scholar
  8. 8.
    Tamaoki J, Takeyama K, Yamawaki I, Kondo M, Konno K (1997) Lipopolysaccharide-induced goblet cell hypersecretion in the guinea pig trachea: inhibition by macrolides. Am J Physiol 272: L15–L19PubMedGoogle Scholar
  9. 9.
    Tamaoki J, Nakata J, Tagaya E, Konno K (1996) Effects of roxithromycin and erythromycin on interleukin 8-induced neutrophil recruitment and goblet cell secretion in guinea pig tracheas. Antimicrob Agents Chemother 40: 1726–8PubMedGoogle Scholar
  10. 10.
    Irokawa T, Sasaki T, Shimura S, Sasamori K, Oshiro T, Nara M, Tamada T, Shirato K (1999) Cholinomimetic action of macrolide antibiotics on airway gland electrolyte secretion. Am J Physiol 276: L951–L957PubMedGoogle Scholar
  11. 11.
    Zuhdi Alimam M, Piazza FM, Selby DM, Letwin N, Huang L, Rose MC (2000) Muc5/5ac mucin messenger RNA and protein expression is a marker of goblet cell metaplasia in murine airways. Am J Respir Cell Mol Biol 22: 253–60PubMedGoogle Scholar
  12. 12.
    Takeyama K, Fahy JV, Nadel JA (2001) Relationship of epidermal growth factor receptors to goblet cell production in human bronchi. Am J Respir Crit Care Med 163: 511–6PubMedGoogle Scholar
  13. 13.
    Wickstrom C, Davies JR, Eriksen GV, Veerman EC, Carlstedt I (1998) MUC5B is a major gel-forming, oligomeric mucin from human salivary gland, respiratory tract and endocervix: identification of glycoforms and C-terminal cleavage. Biochem J 334: 685–93PubMedGoogle Scholar
  14. 14.
    Hovenberg HW, Davies JR, Herrmann A, Linden CJ, Carlstedt I (1996) MUC5AC, but not MUC2, is a prominent mucin in respiratory secretions. Glycoconj J 13: 839–47CrossRefPubMedGoogle Scholar
  15. 15.
    Davies JR, Svitacheva N, Lannefors L, Kornfalt R, Carlstedt I (1999) Identification of MUC5B, MUC5AC and small amounts of MUC2 mucins in cystic fibrosis airway secretions. Biochem J 344: 321–30CrossRefPubMedGoogle Scholar
  16. 16.
    Kaneko Y, Yanagihara K, Seki M, Kuroki M, Miyazaki Y, Hirakata Y, Mukae H Tomono K, Kadota J, Kohno S (2003) Clarithromycin inhibits overproduction of muc5ac core protein in murine model of diffuse panbronchiolitis. Am J Physiol Lung Cell Mol Physiol 285: L847–L853PubMedGoogle Scholar
  17. 17.
    Li JD, Feng W, Gallup M, Kim JH, Gum J, Kim Y, Basbaum C (1998) Activation of NFkappaB via a Src-dependent Ras-MAPK-pp90rsk pathway is required for Pseudomonas aeruginosa-induced mucin overproduction in epithelial cells. Proc Natl Acad Sci USA 95: 5718–23CrossRefPubMedGoogle Scholar
  18. 18.
    Takeyama K, Dabbagh K, Lee HM, Agusti C, Lausier JA, Ueki IF, Grattan KM, Nadel JA (1999) Epidermal growth factor system regulates mucin production in airways. Proc Natl Acad Sci USA 96: 3081–6CrossRefPubMedGoogle Scholar
  19. 19.
    Perrais M, Pigny P, Copin MC, Aubert JP, Van Seuningen I (2002) Induction of MUC2 and MUC5AC mucins by factors of the epidermal growth factor (EGF) family is mediated by EGF receptor/Ras/Raf/extracellular signal-regulated kinase cascade and Sp1. J Biol Chem 277: 32258–67CrossRefPubMedGoogle Scholar
  20. 20.
    Takeyama K, Tamaoki J, Kondo M, Aoshiba K, Nakata J, Isono K, Nagai A (2001) Effect of macrolide antibiotics on MUC5AC production in human bronchial epithelial cells. Jpn J Antibiot 54: 52–4PubMedGoogle Scholar
  21. 21.
    Aoki Y, Kao PN (1999) Erythromycin inhibits transcriptional activation of NF-kappaB but not NFAT, through calcineurin-independent signaling in T cells. Antimicrob Agents Chemother 43: 2678–84PubMedGoogle Scholar
  22. 22.
    Desaki M, Takizawa H, Ohtoshi T, Kasama T, Kobayashi K, Sunazuka T, Omura S, Yamamoto K, Ito K (2000) Erythromycin suppresses nuclear factor-kappaB and activator protein-1 activation in human bronchial epithelial cells. Biochem Biophys Res Commun 267: 124–8CrossRefPubMedGoogle Scholar
  23. 23.
    Anderson R (1989) Erythromycin and roxithromycin potentiate human neutrophil locomotion in vitro by inhibition of leukoattractant-activated superoxide generation and autooxidation. J Infect Dis 159: 966–73PubMedGoogle Scholar
  24. 24.
    Gorrini M, Lupi A, Viglio S, Pamparana F, Cetta G, Iadarola P, Powers JC, Luisetti M (2001) Inhibition of human neutrophil elastase by erythromycin and flurythromycin, two macrolide antibiotics. Am J Respir Cell Mol Biol 25: 492–9PubMedGoogle Scholar
  25. 25.
    Tamaoki J, Takeyama K, Tagaya E, Konno K (1995) Effect of clarithromycin on sputum production and its rheological properties in chronic respiratory tract infections. Antimicrob Agents Chemother 39: 1688–90PubMedGoogle Scholar
  26. 26.
    Tagaya E, Tamaoki J, Kondo M, Nagai A (2002) Effect of a short course of clarithromycin therapy on sputum production in patients with chronic airway hypersecretion. Chest 122: 213–18CrossRefPubMedGoogle Scholar
  27. 27.
    Rubin BK, Druce H, Ramirez OE, Palmer R (1997) Effect of clarithromycin on nasal mucus properties in healthy subjects and in patients with purulent rhinitis. Am J Respir Crit Care Med 155: 2018–23PubMedGoogle Scholar
  28. 28.
    Takeyama K, Tamaoki J, Chiyotani A, Tagaya E, Konno K (1993) Effect of macrolide antibiotics on ciliary motility in rabbit airway epithelium in vitro. J Pharm Pharmacol 45:756–8PubMedGoogle Scholar
  29. 29.
    Ordonez CL, Khashayar R, Wong HH, Ferrando R, Wu R, Hyde DM, Hotchkiss JA, Zhang Y, Novikov A, Dolganov G et al (2001) Mild and moderate asthma is associated with airway goblet cell hyperplasia and abnormalities in mucin gene expression. Am J Respir Crit Care Med 163: 517–23PubMedGoogle Scholar
  30. 30.
    Henke MO, Renner A, Huber RM, Seeds MC, Rubin BK (2004) MUC5AC and MUC5B mucins are decreased in cystic fibrosis airway secretions. Am J Respir Cell Mol Biol 31: 86–91CrossRefPubMedGoogle Scholar
  31. 31.
    Chu HW, Kraft M, Krause JE, Rex MD, Martin RJ (2000) Substance P and its receptor neurokinin 1 expression in asthmatic airways. J Allergy Clin Immunol 106: 713–22CrossRefPubMedGoogle Scholar
  32. 32.
    Shao MX, Ueki IF, Nadel JA (2003) Tumor necrosis factor alpha-converting enzyme mediates MUC5AC mucin expression in cultured human airway epithelial cells. Proc Natl Acad Sci USA 100: 11618–23CrossRefPubMedGoogle Scholar

Copyright information

© Birkhäuser Verlag Basel/Switzerland 2005

Authors and Affiliations

  • Kiyoshi Takeyama
    • 1
  1. 1.First Department of MedicineTokyo Women’s Medical University School of MedicineTokyoJapan

Personalised recommendations