Immune system

  • Jun-ichi Kadota
Part of the Progress in Inflammation Research book series (PIR)


Antimicrob Agent Respir Crit Macrolide Antibiotic Bronchiolitis Obliterans Syndrome Diffuse Panbronchiolitis 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Milik AM, Buechner-Maxwell VA, Sonstein J, Kim S, Seitzman G.D, Beals TF, Curtis JL (1997) Lung lymphocyte elimination by apoptosis in the murine response to intratracheal particulate antigen. J Clin Invest 99: 1082–91PubMedGoogle Scholar
  2. 2.
    Mosmann TR, Sad S (1996) The expanding universe of T cell subsets: Th1, Th2 and more. Immunol Today 17: 138–46CrossRefPubMedGoogle Scholar
  3. 3.
    Scott P, Kaufmann SHE (1991) The role of T-cell subsets and cytokines in the regulation of infections. Immunol Today 12: 346–8CrossRefPubMedGoogle Scholar
  4. 4.
    Hsieh CS, Macatonia SE, Tripp CS, O’Garra A, Murphy KM (1993) Development of Th1 CD4+ T cells through IL-12 produced by Listeria-induced macrophages. Science 260: 547–9PubMedGoogle Scholar
  5. 5.
    Kudoh S, Azuma A, Yamamoto M, Izumi T, Ando M (1998) Improvement of survival in patients with diffuse panbronchiolitis treated with low-dose erythromycin. Am J Respir Crit Care Med 157: 1829–32PubMedGoogle Scholar
  6. 6.
    Mukae H, Kadota J, Kohno S, Kusano S, Morikawa T, Matsukura S, Hara K (1995) Increase in activated CD8+ cells in bronchoalveolar lavage fluid in patients with diffuse panbronchiolitis. Am J Respir Crit Care Med 152: 613–8PubMedGoogle Scholar
  7. 7.
    Kawakami K, Kadota J, Iida K, Fujii T, Shirai R, Matsubara Y, Kohno S (1997) Phenotypic characterization of T cells in bronchoalveolar lavage fluid (BALF) and peripheral blood of patients with diffuse panbronchiolitis; the importance of cytotoxic T cells. Clin Exp Immunol 107: 410–6CrossRefPubMedGoogle Scholar
  8. 8.
    Yanagihara K, Tomono K, Sawai T, Hirakata Y, Kadota J, Koga H, Tashiro T, Kohno S (1997) Effect of clarithromycin on lymphocytes in chronic respiratory Pseudomonas aeruginosa infection. Am J Respir Crit Care Med 155: 337–42PubMedGoogle Scholar
  9. 9.
    Sato K, Suga M, Akaike T, Fujii S, Muranaka H, Doi T, Maeda H, Ando M (1998) Therapeutic effect of erythromycin on influenza virus-induced lung injury in mice. Am J Respir Crit Care Med 157: 853–7PubMedGoogle Scholar
  10. 10.
    Morikawa K, Oseko F, Morikawa S, Iwamoto K (1994) Immunomodulatory effects of three macrolides, midecamycin acetate, josamycin, and clarithromycin, on human Tlymphocyte function in vitro. Antimicrob Agents Chemother 38: 2643–7PubMedGoogle Scholar
  11. 11.
    Sakito O, Kadota J, Kohno S, Abe K, Shirai R, Hara K (1996) Interleukin 1β, tumor necrosis factor alpha, and interleukin 8 in bronchoalveolar lavage fluid of patients with diffuse panbronchiolitis: A potential mechanism of macrolide therapy. Respiration 63: 42–8PubMedGoogle Scholar
  12. 12.
    Kadota J, Matsubara Y, Ishimatsu Y, Ashida M, Abe K, Shirai R, Iida K, Kawakami K, Taniguchi H, Fujii T et al (1996) Significance of IL-1beta and IL-1 receptor antagonist (IL-1Ra) in bronchoalveolar lavage fluid (BALF) in patients with diffuse panbronchiolitis (DPB). Clin Exp Immunol 103: 461–6PubMedGoogle Scholar
  13. 13.
    Yanagihara K, Tomono K, Kuroki M, Kaneko Y, Sawai T, Ohno H, Miyazaki Y, Higashiyama Y, Maesaki S, Kadota J et al (2000) Intrapulmonary concentrations of inflammatory cytokines in a mouse model of chronic respiratory infection caused by Pseudomonas aeruginosa. Clin Exp Immunol 122: 67–71CrossRefPubMedGoogle Scholar
  14. 14.
    Konno S, Asano K, Kurokawa M, Ikeda K, Okamoto K, Adachi M (1994) Antiasthmatic activity of a macrolide antibiotic, roxithromycin: analysis of possible mechanisms in vitro and in vivo. Int Arch Allergy Immunol 105: 308–16PubMedGoogle Scholar
  15. 15.
    Morikawa K, Watabe H, Araake M, Morikawa S (1996) Modulatory effect of antibiotics on cytokine production by human monocytes in vitro. Antimicrob Agents Chemother 40: 1366–70PubMedGoogle Scholar
  16. 16.
    Iino Y, Toriyama M, Kudo K, Natori Y, Yuo A (1992) Erythromycin inhibition of lipopolysaccharide-stimulated tumor necrosis factor alpha production by human monocytes in vitro. Ann Otol Rhinol Laryngol (Suppl) 157: 16–20Google Scholar
  17. 17.
    Hornung F, Scala G, Lenardo MJ (2000) TNF-alpha-induced secretion of C-C chemokines modulates C-C chemokine receptor 5 expression on peripheral blood lymphocytes. J Immunol 15; 164: 6180–7PubMedGoogle Scholar
  18. 18.
    Lane BR, Markovitz DM, Woodford NL, Rochford R, Strieter RM, Coffey MJ (1999) TNF-alpha inhibits HIV-1 replication in peripheral blood monocytes and alveolar macrophages by inducing the production of RANTES and decreasing C-C chemokine receptor 5 (CCR5) expression. J Immunol 163: 3653–61PubMedGoogle Scholar
  19. 19.
    Gerhardt SG, McDyer JF, Girgis RE, Conte JV, Yang SC, Orens JB (2003) Maintenance azithromycin therapy for bronchiolitis obliterans syndrome: results of a pilot study. Am J Respir Crit Care Med 168: 121–5CrossRefPubMedGoogle Scholar
  20. 20.
    Kadota J, Mukae H, Tomono K, Kohno S (2001) High concentrations of betachemokines in BAL fluid of patients with diffuse panbronchiolitis. Chest 120: 602–7CrossRefPubMedGoogle Scholar
  21. 21.
    Kadota J, Iida K, Kawakami K, Matsubara Y, Shirai R, Abe K, Tanigichi H, Kaseda M, Kawamoto S, Kohno S (1997) Analysis of inflammatory cell infiltration and its related factors in the lung of patients with diffuse panbronchiolitis. Jpn J Inflammation 17: 261–7Google Scholar
  22. 22.
    Morikawa T, Kadota JI, Kohno S, Kondo T (2000) Superoxide dismutase in alveolar macrophages from patients with diffuse panbronchiolitis. Respiration 67: 546–51CrossRefPubMedGoogle Scholar
  23. 23.
    Katoh S, Matsubara Y, Taniguchi H, Fukushima K, Mukae H, Kadota J, Matsukura S, Kohno S (2001) Characterization of CD44 expressed on alveolar macrophages in patients with diffuse panbronchiolitis. Clin Exp Immunol 126: 545–50CrossRefPubMedGoogle Scholar
  24. 24.
    Kita E, Sawaki M, Mikasa K, Hamada K, Takeuchi S, Maeda K, Narita N (1993) Alterations of host response by a long-term treatment of roxithromycin. J Antimicrob Chemother 32: 285–94PubMedGoogle Scholar
  25. 25.
    Sugiyama Y, Yanagisawa K, Tominaga SI, Kitamura S (1999) Effects of long-term administration of erythromycin on cytokine production in rat alveolar macrophages. Eur Respir J 14: 1113–6CrossRefPubMedGoogle Scholar
  26. 26.
    Yoshimura T, Kurita C, Yamazaki F, Shindo J, Morishima I, Machida K, Sumita T, Horiba M, Nagai H (1995) Effects of roxithromycin on proliferation of peripheral blood mononuclear cells and production of lipopolysaccharide-induced cytokines. Biol Pharm Bull 18: 876–81PubMedGoogle Scholar
  27. 27.
    Kita E, Sawaki M, Mikasa K, Oku D, Hamada K, Maeda K, Narita N, Kashiba S (1993) Proliferation of erythromycin-stimulated mouse peritoneal macrophages in the absence of exogenous growth factors. Nat Immun 12: 326–38PubMedGoogle Scholar
  28. 28.
    Forsgren A, Schlossman SF, Tedder TF (1987) 4-Quinolone drugs affect cell cycle progression and function of human lymphocytes in vitro. Antimicrob Agents Chemother 31: 768–73PubMedGoogle Scholar
  29. 29.
    Stunkel KG, Hewlett G, Zeiler HJ (1991) Ciprofloxacin enhances T cell function by modulating interleukin activities. Clin Exp Immunol 86: 525–31PubMedGoogle Scholar
  30. 30.
    Riesbeck K, Andersson J, Gullberg M, Forsgren A (1989) Fluorinated 4-quinolones induce hyperproduction of interleukin 2. Proc Natl Acad Sci USA 86: 2809–13PubMedGoogle Scholar
  31. 31.
    Zehavi-Willner T, Shalit I (1989) Enhancement of interleukin-2 production in human lymphocytes by two new quinolone derivatives. Lymphokine Res 8: 35–46PubMedGoogle Scholar
  32. 32.
    Kletter Y, Riklis I, Shalit I, Fabian I (1991) Enhanced repopulation of murine hematopoietic organs in sublethally irradiated mice after treatment with ciprofloxacin. Blood 78: 1685–91PubMedGoogle Scholar
  33. 33.
    Shalit I, Kletter Y, Weiss K, Gruss T, Fabian I (1997) Enhanced hematopoiesis in sublethally irradiated mice treated with various quinolones. Eur J Haematol 58: 92–8PubMedGoogle Scholar
  34. 34.
    Van Vlem B, Vanholder R, De Paepe P, Vogelaers D, Ringoir S (1996) Immunomodulating effects of antibiotics: literature review. Infection 24: 275–91CrossRefPubMedGoogle Scholar
  35. 35.
    Krammer PH (2000) CD95’s deadly mission in the immune system. Nature 407: 789–95PubMedGoogle Scholar
  36. 36.
    Oltvai ZN, Milliman CL, Korsmeyer SJ (1993) Bcl-2 heterodimerizes in vivo with a conserved homolog, Bax, that accelerates programmed cell death. Cell 74: 609–19CrossRefPubMedGoogle Scholar
  37. 37.
    Alderson MR, Tough TW, Davis-Smith T, Braddy S, Falk B, Schooley KA, Goodwin RG, Smith CA, Ramsdell F, Lynch DH (1995) Fas ligand mediates activation-induced cell death in human T lymphocytes. J Exp Med 181: 71–7CrossRefPubMedGoogle Scholar
  38. 38.
    Van Parijs L, Biuckians A, Abbas AK (1998) Functional roles of Fas and Bcl-2-regulated apoptosis of T lymphocytes. J Immunol 160: 2065–71PubMedGoogle Scholar
  39. 39.
    Vignola AM, Chanez P, Chiappara G, Siena L, Merendino A, Reina C, Gagliardo R, Profita M, Bousquet J, Bonsignore G (1999) Evaluation of apoptosis of eosinophils, macrophages, and T lymphocytes in mucosal biopsy specimens of patients with asthma and chronic bronchitis. J Allergy Clin Immunol 103: 563–73PubMedGoogle Scholar
  40. 40.
    Ogawa N, Sugawara Y, Fujiwara Y, Noma T (2003) Roxithromycin promotes lymphocyte apoptosis in Dermatophagoides-sensitive asthma patients. Eur J Pharmacol 474: 273–81CrossRefPubMedGoogle Scholar
  41. 41.
    Ishimatsu Y, Kadota J, Iwashita T, Nagata T, Ishii H, Shikuwa C, Kaida H, Mukae H, Kohno S (2004) Macrolide antibiotics induces apoptosis in human peripheral lymphocytes. Int J Antimicrob Agents 24: 49–55CrossRefGoogle Scholar
  42. 42.
    Mizunoe S, Kadota J, Tokimatsu I, Kishi K, Nagai H, Nasu M (2004) Clarithromycin and azithromycin induce apoptosis of activated lymphocytes via down-regulation of BclxL. Int Immunopharmacol 4: 1201–7CrossRefPubMedGoogle Scholar
  43. 43.
    Jun YT, Kim HJ, Song MJ, Lim JH, Lee DG, Han KJ, Choi SM, Yoo JH, Shin WS, Choi JH (2003) In vitro effects of ciprofloxacin and roxithromycin on apoptosis of Jurkat T lymphocytes. Antimicrob Agents Chemother 47: 1161–4CrossRefPubMedGoogle Scholar
  44. 44.
    Konig B, Konig W (2002) Moxifloxacin inhibits staphylococcal superantigen induced apoptosis in T lymphocytes. 12th European Congress of Clinical and Microbiological Infectious Diseases (ECCMID). Clin Microbiol Inf Dis 8: 166Google Scholar

Copyright information

© Birkhäuser Verlag Basel/Switzerland 2005

Authors and Affiliations

  • Jun-ichi Kadota
    • 1
  1. 1.Division of Pathogenesis and Disease Control Department of Infectious DiseasesOita University Faculty of MedicineOitaJapan

Personalised recommendations