Antibacterial agents and the oxidative burst

  • Marie-Thérèse Labro
Part of the Progress in Inflammation Research book series (PIR)


NADPH Oxidase Antibacterial Agent Oxidative Burst Antimicrob Agent Respiratory Burst 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Labro MT (2000) Interference of antibacterial agents with phagocyte functions: immunomodulation or “immuno-fairy” tales. Clin Microbiol Rev 13: 615–50CrossRefPubMedGoogle Scholar
  2. 2.
    Labro MT (2002) Antibiotics as anti-inflammatory drugs. Curr Op Investig Drugs 3:61–8Google Scholar
  3. 3.
    Labro MT, El Benna J (1993) Interaction of antibiotics with the phagocyte oxidative burst. In: Faist E, Meakins JL, Schildberg FW (eds): Host defense dysfunction in trauma, shock and sepsis. Springer-Verlag, Berlin, Heidelberg, 953–64Google Scholar
  4. 4.
    Clark RA (1999) Activation of the neutrophil respiratory burst oxidase. J Infect Dis 179(Suppl 2): S309–317PubMedGoogle Scholar
  5. 5.
    Babior BMC (1999) NADPH oxidase: an update. Blood 93: 1464–76PubMedGoogle Scholar
  6. 6.
    Vignais PV (2002) The superoxide-generating NADPH oxidase: structural aspects and activation mechanism. Cell Mol Life Sci 59: 1428–59CrossRefPubMedGoogle Scholar
  7. 7.
    Bokoch GM, Diebold BA (2002) Current molecular models for NADPH oxidase regulation by Rac GTPase. Blood 100: 2692–6CrossRefPubMedGoogle Scholar
  8. 8.
    Heyworth PG, Cross AR, Curnutte JT (2003) Chronic granulomatous disease. Curr Opin Immunol 15: 578–84CrossRefPubMedGoogle Scholar
  9. 9.
    Hampton MB, Kettle AJ, Winterbourn CC (1998) Inside the neutrophil phagosome: oxidants, myeloperoxidase, and bacterial killing. Blood 92: 3007–17PubMedGoogle Scholar
  10. 10.
    Klebanoff SJ (1999) Myeloperoxidase. Proc Assoc Am Physicians 111(5): 383–9PubMedGoogle Scholar
  11. 11.
    Karlsson A, Dahlgren C (2002) Assembly and activation of the neutrophil NADPH oxidase in granule membranes. Antioxid Redox Signal 9: 49–60CrossRefGoogle Scholar
  12. 12.
    Roos D, van Bruggen R, Meischl C (2003) Oxidative killing of microbes by neutrophils. Microbes Infect 5: 1307–15CrossRefPubMedGoogle Scholar
  13. 13.
    Geiszt M, Kapus A, Ligeti E (2001) Chronic granulomatous disease: more than the lack of superoxide? J Leukoc Biol 69: 191–6PubMedGoogle Scholar
  14. 14.
    Rosen H (2004) Bacterial responses to neutrophil phagocytosis. Curr Opin Hematol 11:1–6CrossRefPubMedGoogle Scholar
  15. 15.
    Iles KE, Forman HJ (2002) Macrophage signaling and respiratory burst. Immunol Res 26: 95–105CrossRefPubMedGoogle Scholar
  16. 16.
    Dahlgren C, Karlsson A (1999) Respiratory burst in human neutrophils. J Immunol Methods 232: 3–14CrossRefPubMedGoogle Scholar
  17. 17.
    Bulatovic VM, Wengenack NL, Uhl JR, Hall L, Roberts GD, Cockerill III FR, Rusnak F (2002) Oxidative stress increases susceptibility of Mycobacterium tuberculosis to isoniazid. Antimicrob Agents Chemother 46: 2765–71CrossRefPubMedGoogle Scholar
  18. 18.
    Uetrecht JP (1994) Metabolism of drugs by leukocytes. Drug Metabol Drug Interact 11: 259–82PubMedGoogle Scholar
  19. 19.
    Saniabadi AR, Wada K, Umemura K, Nakashima M (1996) Impairment of phagocytic cell respiratory burst by UVA in the presence of fluoroquinolones: an oxygen-dependent phototoxic damage to cell surface microvilli. Photochem Photobiol 33: 137–42CrossRefGoogle Scholar
  20. 20.
    Hoeben D, Dosogne H, Heyneman R, Burvenich C (1997) Effect of antibiotics on the phagocytotic and respiratory burst activity of bovine granulocytes. Eur J Pharmacol 332: 289–97CrossRefPubMedGoogle Scholar
  21. 21.
    Hoeben D, Burvenich C, Heyneman R (1998) Antibiotic commonly used to treat mastitis and respiratory burst of bovine polymorphonuclear leukocytes. J Dairy Sci 81: 403–10PubMedGoogle Scholar
  22. 22.
    Kettle AJ, Gedye CA, Winterbourn CC (1993) Superoxide is an antagonist of antiinflammatory drugs that inhibit hypochlorous acid production by myeloperoxidase. Biochem Pharmacol 45: 2003–10CrossRefPubMedGoogle Scholar
  23. 23.
    Gressier B, Brunet C, Dine T, Luycks M, Ballester L, Cazin M, Cazin JC (1998) In vitro activity of aminoglycosides on the respiratory burst response in human polymorphonuclear neutrophils. Methods Find Exp Clin Pharmacol 20: 819–24CrossRefPubMedGoogle Scholar
  24. 24.
    Spisani S, Traniello S, Martuccio C, Rizzuti O, Cellai L (1997). Rifamycins inhibit human neutrophil functions: new derivatives with potential antiinflammatory activity. Inflammation 21: 391–400CrossRefPubMedGoogle Scholar
  25. 25.
    Spisani S, Traniello S, Onori AM, Rizzuti O, Martuccio C, Cellai L (1998) 3-(Carboxyalkylthio) rifamycin S and SV derivatives inhibit human neutrophil functions. Inflammation 22: 459–69CrossRefPubMedGoogle Scholar
  26. 26.
    Labro MT (1995) Resistance to and immunomodulation effect of cephalosporin antibiotics. Clin Drug Invest 9(Suppl 3): 31–44Google Scholar
  27. 27.
    Coleman MD, Smith JK, Perris AD, Buck NS, Seydi JK (1997) Studies on the inhibitory effects of analogues of dapsone on neutrophil functions in vitro. J Pharm Pharmacol 49: 53–7PubMedGoogle Scholar
  28. 28.
    Krause R, Patruta S, Daxböck F, Fladerer P, Wenisch C (2001) The effect of fosfomycin on neutrophil function. J Antimicrob Chemother 47: 141–6CrossRefPubMedGoogle Scholar
  29. 29.
    Hamada M, Honda J, Yoshimoto T, Fumimori T, Okamoto M, Aizawa H (2002) Fosfomycin inhibits neutrophil function via a protein kinase C-dependent signaling pathway. Int Immunopharmacol 2: 511–18CrossRefPubMedGoogle Scholar
  30. 30.
    Labro MT (1997) Effects of macrolides on leukocytes and inflammation. In: Zinner SH, Young LS, Acar JF, Neu HC (eds): Expanding indications for the new macrolides, azalides and streptogramins. Marcel Dekker, New York, 101–16Google Scholar
  31. 31.
    Labro MT (1998) Antiinflammatory activity of macrolides: a new therapeutic potential? J Antimicrob Chemother 41(Suppl. B): 37–46CrossRefPubMedGoogle Scholar
  32. 32.
    Labro MT (1998) Immunological effects of macrolides. Curr Op Infect Dis 11: 681–8Google Scholar
  33. 33.
    Culic O, Erakovic V, Parnham MJ (2001) Anti-inflammatory effects of macrolide antibiotics. Eur J Pharmacol 429: 209–29CrossRefPubMedGoogle Scholar
  34. 34.
    Abdelghaffar H, Soukri A, Babin-Chevaye C, Labro MT (2003) Interactions of macrolides and ketolides with the phagocytic cell line PLB-985. J Chemother 28: 350–6Google Scholar
  35. 35.
    Cui CH, Honda K, Saito N, Yamada Y, Sannobe S, Ueki S, Hamada H, Yamaguchi K, Kobayashi Y, Adachi T, Kayaba H, Chihara J (2001) Effect of roxithromycin on eotaxin-primed reactive oxygen species from eosinophils. Int Arch Allergy Immunol 125(Suppl 1): 38–41CrossRefPubMedGoogle Scholar
  36. 36.
    Ives TJ, Schwab UE, Ward ES, Butts JD, Hall IH (2001) Disposition and functions of clarithromycin in human THP-1 monocytes during stimulated and unstimulated conditions. Res Commun Mol Pathol Pharmacol 110: 183–208PubMedGoogle Scholar
  37. 37.
    Abdelghaffar H, Vazifeh D, Labro MT (1997) Erythromycin A-derived macrolides modify the functional activities of human neutrophils by altering the phospholipase D-phosphatidate phosphohydrolase transduction pathway. J Immunol 159: 3995–4005PubMedGoogle Scholar
  38. 38.
    Theron AJ, Feldman C, Anderson R (2000) Investigation of the antiinflammatory and membrane-stabilizing potential of spiramycin in vitro. J Antimicrob Chemother 46:269–71CrossRefPubMedGoogle Scholar
  39. 39.
    Abdelghaffar H, Kirst H, Soukri A, Babin-Chevaye C, Labro MT (2002) Structure-activity relationships among 9-N-alkyl derivatives of erythromycylamine and their effect on the oxidative burst of human neutrophils in vitro. J Chemother 14: 132–9PubMedGoogle Scholar
  40. 40.
    Vazifeh D, Preira A, Bryskier A, Labro MT (1998) Interactions between HMR 3647, a new ketolide, and human polymorphonuclear neutrophils. Antimicrob Agents Chemother 42: 1944–51PubMedGoogle Scholar
  41. 41.
    Vazifeh D, Bryskier A, Labro MT (2000) Effect of proinflammatory cytokines on the interplay between roxithromycin, HMR 3647, or HMR 3004 and human polymorphonuclear neutrophils. Antimicrob Agents Chemother 44: 511–21CrossRefPubMedGoogle Scholar
  42. 42.
    Abdelghaffar H, Babin-Chevaye C, Labro MT (2004) Interaction between the new ketolide, ABT-773 (cethromycin) and human polymorphonuclear neutrophils and the phagocytic cell line PLB-985 in vitro. Antimicrob Agents Chemother 48: 1096–1104CrossRefPubMedGoogle Scholar
  43. 43.
    Hand WL, Hand DL (1995) Influence of pentoxifylline and its derivatives on antibiotic uptake and superoxide generation by human phagocytic cells. Antimicrob Agents Chemother 39: 1574–9PubMedGoogle Scholar
  44. 44.
    Kadota JI, Iwashita T, Matsubara Y, Ishimatsu Y, Yoshinaga M, Abe K, Kohno S (1998) Inhibitory effect of erythromycin on superoxide anion production by human neutrophils primed with granulocyte-colony stimulating factor. Antimicrob Agents Chemother 42:1866–7PubMedGoogle Scholar
  45. 45.
    Abeyama K, Kawahara K-I, Iino S, Hamada T, Arimura S-I, Matsushita T, Nakajima T, Maruyama I (2003)Antibiotic cyclic AMP signaling by “primed” leukocytes confers anti-inflammatory cytoprotection. J Leukoc Biol 74: 908–15CrossRefPubMedGoogle Scholar
  46. 46.
    Riesbeck K (2002) Immunomodulating activity of quinolones: Review. J Chemother 14:3–12PubMedGoogle Scholar
  47. 47.
    Dalhoff A, Shalit I (2003) Immunomodulatory effects of quinolones. Lancet Infect Dis 3: 359–71CrossRefPubMedGoogle Scholar
  48. 48.
    El Bekay R, Alvarez M, Carballo M, Martin-Nieto J, Monteseirin J, Pintado E, Bedoya FJ, Sobrino F (2002) Activation of phagocytic cell NADPH oxidase by norfloxacin: a potential mechanism to explain its bactericidal action. J Leukoc Biol 71: 255–61PubMedGoogle Scholar
  49. 49.
    Fischer S, Adam D (2001) Effects of moxifloxacin on neutrophil phagocytosis, burst production, and killing as determined by a whole-blood cytofluorometric method. Antimicrob Agents Chemother 45: 2668–9CrossRefPubMedGoogle Scholar
  50. 50.
    Braga PC, Dal Sasso M, Bovio C, Zavaroni E, Fonti E (2002) Effects of gatifloxacin on phagocytosis, intracellular killing and oxidant production by human polymorphonuclear neutrophils. Int J Antimicrob Agents I19: 183–7CrossRefGoogle Scholar
  51. 51.
    Niwa M, Kanamori Y, Hotta K, Matsuno H, Kozawa O, Fujimoto S, Uematsu T (2002) Priming by grepafloxacin on respiratory burst of human neutrophils: its possible mechanism. J Antimicrob Chemother 50: 469–78CrossRefPubMedGoogle Scholar
  52. 52.
    Wang JP, Raung SL, Huang LJ, Kuo SC (1998) Involvement of cyclic AMP generation in the inhibition of respiratory burst by 2-phenyl-4-quinolone (YT-1) in rat neutrophils. Biochem Pharmacol 56: 505–14Google Scholar
  53. 53.
    Tsuji S, Taniuchi S, Hasui M, Yamamoto A, Kobayashi Y (2002). Increased nitric oxide production by neutrophils from patients with chronic granulomatous disease on trimethoprim-sulfamethoxazole. Nitric Oxide 7: 283–8CrossRefPubMedGoogle Scholar
  54. 54.
    Labro MT (1993) Immunomodulation by antibacterial agents. Is it clinically relevant? Drugs 45: 319–28PubMedGoogle Scholar
  55. 55.
    Vanholder R, Dagrosa EE, Van Landschoot N, Waterloos MA, Ringoir SM (1993) Antibiotics and energy delivery to the phagocytosis-associated respiratory burst in chronic hemodialysis patients: a comparison of cefodizime and cotrimoxazole. Nephron 63: 65–72PubMedGoogle Scholar
  56. 56.
    Wenisch C, Parshalk B, Hasenhundl M, Wiesinger E, Graninger W (1995) Effects of cefodizime and ceftriaxone on phagocytic functions in patients with severe infections. Antimicrob Agents Chemother 39: 672–6PubMedGoogle Scholar
  57. 57.
    Abdelghaffar H, Vazifeh D, Labro MT (2002) Effect of telithromycin (HMR 3647) on polymorphonuclear neutrophil killing of Staphylococcus aureus in comparison with roxithromycin. Antimicrob Agents Chemother 46: 1364–74CrossRefPubMedGoogle Scholar
  58. 58.
    Labro MT, El Benna J, Charlier N, Abdelghaffar H, Hakim J (1994) Cefdinir (CI-983), a new oral amino-2-thiazolyl cephalosporin, inhibits human neutrophil myeloperoxidase in the extracellular medium but not the phagolysosome. J Immunol 152: 2447–2455PubMedGoogle Scholar
  59. 59.
    Takeshita S, Ono Y, Kozuma K, Suzuki M, Kawamura Y, Yokoyama N, Furukawa S, Isshiki T (2002) Modulation of oxidative burst of neutrophils by doxycycline in patients with acute myocardial infarction. J Antimicrob Chemother 49: 411–13CrossRefPubMedGoogle Scholar
  60. 60.
    Bottcher T, Gerber J, Wellmer A, Smirnov AV, Fakhrjanali F, Mix E, Pilz J, Zettl UK, Nau R (2000) Rifampin reduces production of reactive oxygen species of cerebrospinal fluid phagocytes and hippocampal neuronal apoptosis in experimental Streptococcus pneumoniae meningitis. J Infect Dis 181: 2095–8CrossRefPubMedGoogle Scholar
  61. 61.
    Culic O, Erakovic V, Cepelak I, Barisic K, Brajsa K, Ferencic Z, Galovic R, Glojnaric I, Manojlovic Z, Munic V et al (2002) Azithromycin modulates neutrophil function and circulating inflammatory mediators in healthy human subjects. Eur J Pharmacol 450: 277–89CrossRefPubMedGoogle Scholar
  62. 62.
    Labro MT, Bryskier A, Babin-Chevaye C, Hakim J (1988) Interaction de la roxithromycine avec les polynucléaires neutrophiles humains in vitro et ex vivo. Pathol Biol 36: 711–14PubMedGoogle Scholar
  63. 63.
    Hayem G, Petit PX, Levacher M, Gaudin C, Kahn MF, Pocidalo JJ (1994) Cytofluorometric analysis of chondrotoxicity of fluoroquinolone antimicrobial agents. Antimicrob Agents Chemother 38: 243–7PubMedGoogle Scholar
  64. 64.
    Alarcon GS (2000) Tetracyclines for the treatment of rheumatoid arthritis. Expert Opin Investig Drugs 9: 1491–8CrossRefPubMedGoogle Scholar
  65. 65.
    Reasoner DK, Hindman BJ, Dexter F, Subieta A, Cutkomp J, Smith T (1997) Doxycycline reduces early neurologic impairment after cerebral arterial air embolism in the rabbit. Anesthesiol 87: 569–76CrossRefGoogle Scholar
  66. 66.
    Smith JR, Gabler WL (1995) Protective effects of doxycycline in mesenteric ischemia and reperfusion. Res Commun Mol Pathol Pharmacol 88: 303–15PubMedGoogle Scholar
  67. 67.
    Jaffé A, Bush A (2001) Anti-inflammatory effects of macrolides in lung disease. Pediatr Pulmonol 31: 464–73CrossRefPubMedGoogle Scholar
  68. 68.
    Gaylor AS, Reilly JC (2002) Therapy with macrolides in patients with cystic fibrosis. Pharmacother 22: 327–35Google Scholar
  69. 69.
    Carey KW, Alwami A, Danziger LH, Rubinstein I (2003) Tissue reparative effects of macrolide antibiotics in chronic inflammatory sinopulmonary diseases. Chest 123: 261–5CrossRefPubMedGoogle Scholar
  70. 70.
    Cazzola M, Salzillo A, Diamant F (2000) Potential role of macrolides in the treatment of asthma. Monaldi Arch Chest Dis 55: 231–6PubMedGoogle Scholar
  71. 71.
    Leiper K, Morris AI, Rhodes JM (2000) Open label trial of oral clarithromycin in active Crohn’s disease. Aliment Pharmacol Ther 14: 801–6CrossRefPubMedGoogle Scholar

Copyright information

© Birkhäuser Verlag Basel/Switzerland 2005

Authors and Affiliations

  • Marie-Thérèse Labro
    • 1
  1. 1.INSERM U479, CHU X. BichatParisFrance

Personalised recommendations