Skip to main content

Part of the book series: Progress in Inflammation Research ((PIR))

  • 955 Accesses

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Labro MT (2000) Interference of antibacterial agents with phagocyte functions: immunomodulation or “immuno-fairy” tales. Clin Microbiol Rev 13: 615–50

    Article  PubMed  Google Scholar 

  2. Labro MT (2002) Antibiotics as anti-inflammatory drugs. Curr Op Investig Drugs 3:61–8

    Google Scholar 

  3. Labro MT, El Benna J (1993) Interaction of antibiotics with the phagocyte oxidative burst. In: Faist E, Meakins JL, Schildberg FW (eds): Host defense dysfunction in trauma, shock and sepsis. Springer-Verlag, Berlin, Heidelberg, 953–64

    Google Scholar 

  4. Clark RA (1999) Activation of the neutrophil respiratory burst oxidase. J Infect Dis 179(Suppl 2): S309–317

    PubMed  Google Scholar 

  5. Babior BMC (1999) NADPH oxidase: an update. Blood 93: 1464–76

    PubMed  Google Scholar 

  6. Vignais PV (2002) The superoxide-generating NADPH oxidase: structural aspects and activation mechanism. Cell Mol Life Sci 59: 1428–59

    Article  PubMed  Google Scholar 

  7. Bokoch GM, Diebold BA (2002) Current molecular models for NADPH oxidase regulation by Rac GTPase. Blood 100: 2692–6

    Article  PubMed  Google Scholar 

  8. Heyworth PG, Cross AR, Curnutte JT (2003) Chronic granulomatous disease. Curr Opin Immunol 15: 578–84

    Article  PubMed  Google Scholar 

  9. Hampton MB, Kettle AJ, Winterbourn CC (1998) Inside the neutrophil phagosome: oxidants, myeloperoxidase, and bacterial killing. Blood 92: 3007–17

    PubMed  Google Scholar 

  10. Klebanoff SJ (1999) Myeloperoxidase. Proc Assoc Am Physicians 111(5): 383–9

    PubMed  Google Scholar 

  11. Karlsson A, Dahlgren C (2002) Assembly and activation of the neutrophil NADPH oxidase in granule membranes. Antioxid Redox Signal 9: 49–60

    Article  Google Scholar 

  12. Roos D, van Bruggen R, Meischl C (2003) Oxidative killing of microbes by neutrophils. Microbes Infect 5: 1307–15

    Article  PubMed  Google Scholar 

  13. Geiszt M, Kapus A, Ligeti E (2001) Chronic granulomatous disease: more than the lack of superoxide? J Leukoc Biol 69: 191–6

    PubMed  Google Scholar 

  14. Rosen H (2004) Bacterial responses to neutrophil phagocytosis. Curr Opin Hematol 11:1–6

    Article  PubMed  Google Scholar 

  15. Iles KE, Forman HJ (2002) Macrophage signaling and respiratory burst. Immunol Res 26: 95–105

    Article  PubMed  Google Scholar 

  16. Dahlgren C, Karlsson A (1999) Respiratory burst in human neutrophils. J Immunol Methods 232: 3–14

    Article  PubMed  Google Scholar 

  17. Bulatovic VM, Wengenack NL, Uhl JR, Hall L, Roberts GD, Cockerill III FR, Rusnak F (2002) Oxidative stress increases susceptibility of Mycobacterium tuberculosis to isoniazid. Antimicrob Agents Chemother 46: 2765–71

    Article  PubMed  Google Scholar 

  18. Uetrecht JP (1994) Metabolism of drugs by leukocytes. Drug Metabol Drug Interact 11: 259–82

    PubMed  Google Scholar 

  19. Saniabadi AR, Wada K, Umemura K, Nakashima M (1996) Impairment of phagocytic cell respiratory burst by UVA in the presence of fluoroquinolones: an oxygen-dependent phototoxic damage to cell surface microvilli. Photochem Photobiol 33: 137–42

    Article  Google Scholar 

  20. Hoeben D, Dosogne H, Heyneman R, Burvenich C (1997) Effect of antibiotics on the phagocytotic and respiratory burst activity of bovine granulocytes. Eur J Pharmacol 332: 289–97

    Article  PubMed  Google Scholar 

  21. Hoeben D, Burvenich C, Heyneman R (1998) Antibiotic commonly used to treat mastitis and respiratory burst of bovine polymorphonuclear leukocytes. J Dairy Sci 81: 403–10

    PubMed  Google Scholar 

  22. Kettle AJ, Gedye CA, Winterbourn CC (1993) Superoxide is an antagonist of antiinflammatory drugs that inhibit hypochlorous acid production by myeloperoxidase. Biochem Pharmacol 45: 2003–10

    Article  PubMed  Google Scholar 

  23. Gressier B, Brunet C, Dine T, Luycks M, Ballester L, Cazin M, Cazin JC (1998) In vitro activity of aminoglycosides on the respiratory burst response in human polymorphonuclear neutrophils. Methods Find Exp Clin Pharmacol 20: 819–24

    Article  PubMed  Google Scholar 

  24. Spisani S, Traniello S, Martuccio C, Rizzuti O, Cellai L (1997). Rifamycins inhibit human neutrophil functions: new derivatives with potential antiinflammatory activity. Inflammation 21: 391–400

    Article  PubMed  Google Scholar 

  25. Spisani S, Traniello S, Onori AM, Rizzuti O, Martuccio C, Cellai L (1998) 3-(Carboxyalkylthio) rifamycin S and SV derivatives inhibit human neutrophil functions. Inflammation 22: 459–69

    Article  PubMed  Google Scholar 

  26. Labro MT (1995) Resistance to and immunomodulation effect of cephalosporin antibiotics. Clin Drug Invest 9(Suppl 3): 31–44

    Google Scholar 

  27. Coleman MD, Smith JK, Perris AD, Buck NS, Seydi JK (1997) Studies on the inhibitory effects of analogues of dapsone on neutrophil functions in vitro. J Pharm Pharmacol 49: 53–7

    PubMed  Google Scholar 

  28. Krause R, Patruta S, Daxböck F, Fladerer P, Wenisch C (2001) The effect of fosfomycin on neutrophil function. J Antimicrob Chemother 47: 141–6

    Article  PubMed  Google Scholar 

  29. Hamada M, Honda J, Yoshimoto T, Fumimori T, Okamoto M, Aizawa H (2002) Fosfomycin inhibits neutrophil function via a protein kinase C-dependent signaling pathway. Int Immunopharmacol 2: 511–18

    Article  PubMed  Google Scholar 

  30. Labro MT (1997) Effects of macrolides on leukocytes and inflammation. In: Zinner SH, Young LS, Acar JF, Neu HC (eds): Expanding indications for the new macrolides, azalides and streptogramins. Marcel Dekker, New York, 101–16

    Google Scholar 

  31. Labro MT (1998) Antiinflammatory activity of macrolides: a new therapeutic potential? J Antimicrob Chemother 41(Suppl. B): 37–46

    Article  PubMed  Google Scholar 

  32. Labro MT (1998) Immunological effects of macrolides. Curr Op Infect Dis 11: 681–8

    Google Scholar 

  33. Culic O, Erakovic V, Parnham MJ (2001) Anti-inflammatory effects of macrolide antibiotics. Eur J Pharmacol 429: 209–29

    Article  PubMed  Google Scholar 

  34. Abdelghaffar H, Soukri A, Babin-Chevaye C, Labro MT (2003) Interactions of macrolides and ketolides with the phagocytic cell line PLB-985. J Chemother 28: 350–6

    Google Scholar 

  35. Cui CH, Honda K, Saito N, Yamada Y, Sannobe S, Ueki S, Hamada H, Yamaguchi K, Kobayashi Y, Adachi T, Kayaba H, Chihara J (2001) Effect of roxithromycin on eotaxin-primed reactive oxygen species from eosinophils. Int Arch Allergy Immunol 125(Suppl 1): 38–41

    Article  PubMed  Google Scholar 

  36. Ives TJ, Schwab UE, Ward ES, Butts JD, Hall IH (2001) Disposition and functions of clarithromycin in human THP-1 monocytes during stimulated and unstimulated conditions. Res Commun Mol Pathol Pharmacol 110: 183–208

    PubMed  Google Scholar 

  37. Abdelghaffar H, Vazifeh D, Labro MT (1997) Erythromycin A-derived macrolides modify the functional activities of human neutrophils by altering the phospholipase D-phosphatidate phosphohydrolase transduction pathway. J Immunol 159: 3995–4005

    PubMed  Google Scholar 

  38. Theron AJ, Feldman C, Anderson R (2000) Investigation of the antiinflammatory and membrane-stabilizing potential of spiramycin in vitro. J Antimicrob Chemother 46:269–71

    Article  PubMed  Google Scholar 

  39. Abdelghaffar H, Kirst H, Soukri A, Babin-Chevaye C, Labro MT (2002) Structure-activity relationships among 9-N-alkyl derivatives of erythromycylamine and their effect on the oxidative burst of human neutrophils in vitro. J Chemother 14: 132–9

    PubMed  Google Scholar 

  40. Vazifeh D, Preira A, Bryskier A, Labro MT (1998) Interactions between HMR 3647, a new ketolide, and human polymorphonuclear neutrophils. Antimicrob Agents Chemother 42: 1944–51

    PubMed  Google Scholar 

  41. Vazifeh D, Bryskier A, Labro MT (2000) Effect of proinflammatory cytokines on the interplay between roxithromycin, HMR 3647, or HMR 3004 and human polymorphonuclear neutrophils. Antimicrob Agents Chemother 44: 511–21

    Article  PubMed  Google Scholar 

  42. Abdelghaffar H, Babin-Chevaye C, Labro MT (2004) Interaction between the new ketolide, ABT-773 (cethromycin) and human polymorphonuclear neutrophils and the phagocytic cell line PLB-985 in vitro. Antimicrob Agents Chemother 48: 1096–1104

    Article  PubMed  Google Scholar 

  43. Hand WL, Hand DL (1995) Influence of pentoxifylline and its derivatives on antibiotic uptake and superoxide generation by human phagocytic cells. Antimicrob Agents Chemother 39: 1574–9

    PubMed  Google Scholar 

  44. Kadota JI, Iwashita T, Matsubara Y, Ishimatsu Y, Yoshinaga M, Abe K, Kohno S (1998) Inhibitory effect of erythromycin on superoxide anion production by human neutrophils primed with granulocyte-colony stimulating factor. Antimicrob Agents Chemother 42:1866–7

    PubMed  Google Scholar 

  45. Abeyama K, Kawahara K-I, Iino S, Hamada T, Arimura S-I, Matsushita T, Nakajima T, Maruyama I (2003)Antibiotic cyclic AMP signaling by “primed” leukocytes confers anti-inflammatory cytoprotection. J Leukoc Biol 74: 908–15

    Article  PubMed  Google Scholar 

  46. Riesbeck K (2002) Immunomodulating activity of quinolones: Review. J Chemother 14:3–12

    PubMed  Google Scholar 

  47. Dalhoff A, Shalit I (2003) Immunomodulatory effects of quinolones. Lancet Infect Dis 3: 359–71

    Article  PubMed  Google Scholar 

  48. El Bekay R, Alvarez M, Carballo M, Martin-Nieto J, Monteseirin J, Pintado E, Bedoya FJ, Sobrino F (2002) Activation of phagocytic cell NADPH oxidase by norfloxacin: a potential mechanism to explain its bactericidal action. J Leukoc Biol 71: 255–61

    PubMed  Google Scholar 

  49. Fischer S, Adam D (2001) Effects of moxifloxacin on neutrophil phagocytosis, burst production, and killing as determined by a whole-blood cytofluorometric method. Antimicrob Agents Chemother 45: 2668–9

    Article  PubMed  Google Scholar 

  50. Braga PC, Dal Sasso M, Bovio C, Zavaroni E, Fonti E (2002) Effects of gatifloxacin on phagocytosis, intracellular killing and oxidant production by human polymorphonuclear neutrophils. Int J Antimicrob Agents I19: 183–7

    Article  Google Scholar 

  51. Niwa M, Kanamori Y, Hotta K, Matsuno H, Kozawa O, Fujimoto S, Uematsu T (2002) Priming by grepafloxacin on respiratory burst of human neutrophils: its possible mechanism. J Antimicrob Chemother 50: 469–78

    Article  PubMed  Google Scholar 

  52. Wang JP, Raung SL, Huang LJ, Kuo SC (1998) Involvement of cyclic AMP generation in the inhibition of respiratory burst by 2-phenyl-4-quinolone (YT-1) in rat neutrophils. Biochem Pharmacol 56: 505–14

    Google Scholar 

  53. Tsuji S, Taniuchi S, Hasui M, Yamamoto A, Kobayashi Y (2002). Increased nitric oxide production by neutrophils from patients with chronic granulomatous disease on trimethoprim-sulfamethoxazole. Nitric Oxide 7: 283–8

    Article  PubMed  Google Scholar 

  54. Labro MT (1993) Immunomodulation by antibacterial agents. Is it clinically relevant? Drugs 45: 319–28

    PubMed  Google Scholar 

  55. Vanholder R, Dagrosa EE, Van Landschoot N, Waterloos MA, Ringoir SM (1993) Antibiotics and energy delivery to the phagocytosis-associated respiratory burst in chronic hemodialysis patients: a comparison of cefodizime and cotrimoxazole. Nephron 63: 65–72

    PubMed  Google Scholar 

  56. Wenisch C, Parshalk B, Hasenhundl M, Wiesinger E, Graninger W (1995) Effects of cefodizime and ceftriaxone on phagocytic functions in patients with severe infections. Antimicrob Agents Chemother 39: 672–6

    PubMed  Google Scholar 

  57. Abdelghaffar H, Vazifeh D, Labro MT (2002) Effect of telithromycin (HMR 3647) on polymorphonuclear neutrophil killing of Staphylococcus aureus in comparison with roxithromycin. Antimicrob Agents Chemother 46: 1364–74

    Article  PubMed  Google Scholar 

  58. Labro MT, El Benna J, Charlier N, Abdelghaffar H, Hakim J (1994) Cefdinir (CI-983), a new oral amino-2-thiazolyl cephalosporin, inhibits human neutrophil myeloperoxidase in the extracellular medium but not the phagolysosome. J Immunol 152: 2447–2455

    PubMed  Google Scholar 

  59. Takeshita S, Ono Y, Kozuma K, Suzuki M, Kawamura Y, Yokoyama N, Furukawa S, Isshiki T (2002) Modulation of oxidative burst of neutrophils by doxycycline in patients with acute myocardial infarction. J Antimicrob Chemother 49: 411–13

    Article  PubMed  Google Scholar 

  60. Bottcher T, Gerber J, Wellmer A, Smirnov AV, Fakhrjanali F, Mix E, Pilz J, Zettl UK, Nau R (2000) Rifampin reduces production of reactive oxygen species of cerebrospinal fluid phagocytes and hippocampal neuronal apoptosis in experimental Streptococcus pneumoniae meningitis. J Infect Dis 181: 2095–8

    Article  PubMed  Google Scholar 

  61. Culic O, Erakovic V, Cepelak I, Barisic K, Brajsa K, Ferencic Z, Galovic R, Glojnaric I, Manojlovic Z, Munic V et al (2002) Azithromycin modulates neutrophil function and circulating inflammatory mediators in healthy human subjects. Eur J Pharmacol 450: 277–89

    Article  PubMed  Google Scholar 

  62. Labro MT, Bryskier A, Babin-Chevaye C, Hakim J (1988) Interaction de la roxithromycine avec les polynucléaires neutrophiles humains in vitro et ex vivo. Pathol Biol 36: 711–14

    PubMed  Google Scholar 

  63. Hayem G, Petit PX, Levacher M, Gaudin C, Kahn MF, Pocidalo JJ (1994) Cytofluorometric analysis of chondrotoxicity of fluoroquinolone antimicrobial agents. Antimicrob Agents Chemother 38: 243–7

    PubMed  Google Scholar 

  64. Alarcon GS (2000) Tetracyclines for the treatment of rheumatoid arthritis. Expert Opin Investig Drugs 9: 1491–8

    Article  PubMed  Google Scholar 

  65. Reasoner DK, Hindman BJ, Dexter F, Subieta A, Cutkomp J, Smith T (1997) Doxycycline reduces early neurologic impairment after cerebral arterial air embolism in the rabbit. Anesthesiol 87: 569–76

    Article  Google Scholar 

  66. Smith JR, Gabler WL (1995) Protective effects of doxycycline in mesenteric ischemia and reperfusion. Res Commun Mol Pathol Pharmacol 88: 303–15

    PubMed  Google Scholar 

  67. Jaffé A, Bush A (2001) Anti-inflammatory effects of macrolides in lung disease. Pediatr Pulmonol 31: 464–73

    Article  PubMed  Google Scholar 

  68. Gaylor AS, Reilly JC (2002) Therapy with macrolides in patients with cystic fibrosis. Pharmacother 22: 327–35

    Google Scholar 

  69. Carey KW, Alwami A, Danziger LH, Rubinstein I (2003) Tissue reparative effects of macrolide antibiotics in chronic inflammatory sinopulmonary diseases. Chest 123: 261–5

    Article  PubMed  Google Scholar 

  70. Cazzola M, Salzillo A, Diamant F (2000) Potential role of macrolides in the treatment of asthma. Monaldi Arch Chest Dis 55: 231–6

    PubMed  Google Scholar 

  71. Leiper K, Morris AI, Rhodes JM (2000) Open label trial of oral clarithromycin in active Crohn’s disease. Aliment Pharmacol Ther 14: 801–6

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Birkhäuser Verlag Basel/Switzerland

About this chapter

Cite this chapter

Labro, MT. (2005). Antibacterial agents and the oxidative burst. In: Rubin, B.K., Tamaoki, J. (eds) Antibiotics as Anti-Inflammatory and Immunomodulatory Agents. Progress in Inflammation Research. Birkhäuser Basel. https://doi.org/10.1007/3-7643-7310-5_6

Download citation

  • DOI: https://doi.org/10.1007/3-7643-7310-5_6

  • Publisher Name: Birkhäuser Basel

  • Print ISBN: 978-3-7643-5925-6

  • Online ISBN: 978-3-7643-7310-8

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics