Skip to main content

Part of the book series: Progress in Inflammation Research ((PIR))

  • 946 Accesses

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Kudoh S, Uetake T, Hagiwara K, Hirayama M, Hus L-H, Kimura H, Sugiyama Y (1987) Clinical effect of low-dose, long-term erythromycin chemotherapy on diffuse panbronchiolitis. Jpn J Thorac Dis 25: 632–42

    Google Scholar 

  2. Kadota J, Sakito O, Kohno S, Sawa H, Mukae H, Oda H, Kawakami K, Fukushima K, Hiratani K, Hara K (1993) A mechanism of erythromycin treatment in patients with diffuse panbronchiolitis. Am Rev Respir Dis 147: 153–9

    PubMed  Google Scholar 

  3. Spector S, Katz F, Farr R (1974) Troleandomycin: Effectiveness in steroid-dependent asthma and bronchitis. J Allergy Clin Immunol 54: 367–79

    Article  Google Scholar 

  4. Equi A, Balfour-Lynn IM, Bush A, Rosenthal M (2002) Long term azithromycin in children with cystic fibrosis: a randomized, placebo-controlled crossover trial. Lancet 360(9338): 978–84

    Article  PubMed  Google Scholar 

  5. Saiman L, Marshall BC, Mayer-Hamblett N, Burns JL, Quittner AL, Cibene DA, Coquillette S, Fieberg AY, Accurso FJ, Campbell PW 3rd; Macrolide Study Group (2003) Azithromycin in patients with cystic fibrosis chronically infected with Pseudomonas aeruginosa: a randomized controlled trial. JAMA 290(13): 1749–56

    Article  PubMed  Google Scholar 

  6. Sakito O, Kadota J, Kohno S, Kabe K, Shirai R, Hara K (1994) Interleukin 1 beta, tumor necrosis factor alpha, and interleukin 8 in bronchoalveolar lavage fluid of patients with diffuse panbronchiolitis: A potential mechanism of macrolide therapy. Respiration 63: 42–8

    Google Scholar 

  7. Takizawa H (1998) Airway epithelial cells as regulators of airway inflammation. Int J Mol Med 1: 367–78

    PubMed  Google Scholar 

  8. Takizawa H, Ohtoshi T, Kawasaki S, Kohyama T, Sato M, Tanaka M, Kasama T, Kobayashi K, Nakajima K, Ito K (1997) Erythromycin modulates IL-8 expression in human bronchial epithelial cells: Studies with normal and inflamed airway epithelium. Am J Respir Crit Care Med 156: 266–71

    PubMed  Google Scholar 

  9. Nakamura H, Yoshimura K, Jaffe HA, Crystal RG (1991) Interleukin-8 gene expression in human bronchial epithelial cells. J Biol Chem 266: 19611–17

    PubMed  Google Scholar 

  10. Takizawa H, Desaki M, Ohtoshi T, Kikutani T, Okazaki H, Sato M, Akiyama N, Shoji S, Hiramatsu K, Ito K (1995) Erythromycin suppresses interleukin 6 expression by human bronchial epithelial cells. Biochem Biophys Res Commun 210: 781–6

    Article  PubMed  Google Scholar 

  11. Kawasaki S, Takizawa H, Ohtoshi T, Takeuchi N, Kohyama T, Nakamura H, Kasama T, Kobayashi K, Nakahara K, Morita Y, Yamamoto K (1998) Roxithromycin inhibits cytokine production and neutrophil attachment with human bronchial epithelial cells in vitro. Antimicrob Agents Chemother 42: 1499–502

    PubMed  Google Scholar 

  12. Takizawa H, Ohtoshi T, Takeuchi N, Ito K (1996) Effect of macrolide antibiotics on the expression and release of inflammatory cytokines in human bronchial epithelial cells. J Jpn Bronchoesophagol Soc 47: 185–8 ( in Japanese)

    Google Scholar 

  13. Khair OA, Devalia JL, Abdelaziz MM, Sapsford RJ, Davis RJ (1995) Effect of erythromycin on Hemophilus influenzae endotoxin-induced release of IL-6, IL-8 and sICAM-1 by cultured human bronchial epithelial cells. Eur Respir J 8: 1451–7

    Google Scholar 

  14. Iino Y, Toriyama M, Kudo K, Natori Y, You A (199). Erythromycin inhibition of lipopolysaccharide-stimulated tumour necrosis factor-alpha production by human monocytes in vitro. Ann Otol Rhinol Laryngol 101: 16–20

    Google Scholar 

  15. Fujii T, Kadota J, Morikawa T, Matsubara Y, Kawakami K, Iida K, Shirai R, Taniguchi H, Kaseda M, Kawamoto S, Kohno S (1996) Inhibitory effect of erythromycin on interleukin 8 production by 1alpha,25-dihydroxyvitamin D3-stimulated THP-1 cells. Antimicrob Agents Chemother 40: 1548–51

    PubMed  Google Scholar 

  16. Khan AA, Slifer TR, Araujo FG, Remington JS (1999) Effect of clarithromycin and azithromycin on production of cytokines by human monocytes. Int J Antimicrob Agents 11(2): 121–32

    Article  PubMed  Google Scholar 

  17. Sugiyama Y, Yanagisawa K, Tominaga S-I, Kitamura S (1999) Effects of long-term administration of erythromycin on cytokine production in rat alveolar macrophages. Eur Respir J 14: 1113–16

    Article  PubMed  Google Scholar 

  18. Oishi K, Sonoda F, Kobayashi S, Iwagaki A, Nagatake T, Matsushima K, Matsumoto K (1994) Role of interleukin-8 (IL-8) and an inhibitory effect of erythromycin on IL-8 release in the airways of patients with chronic airway diseases. Infect Immunity 62: 4145–52

    Google Scholar 

  19. Kamada AK, Hill MR, Ikle DN, Brenner AM, Szefler SJ (1993) Efficacy and safety of low-dose troleandomycin therapy in children with severe, steroid-requiring asthma. J Allergy Clin Immunol 91(4): 873–82

    Article  PubMed  Google Scholar 

  20. Miyatake H, Taki F, Taniguchi H, Suzuki R, Takagi K, Satake T (1991) Erythromycin reduces the severity of bronchial hyperresponsiveness in asthma. Chest 99: 670–3

    PubMed  Google Scholar 

  21. Konno S, Asano K, Kurokawa M, Ikeda K, Okamoto K, Adachi M (1994) Anti-asthmatic activity of a macrolide antibiotic, roxithromycin. Inter Archv Allergy Immunol 105: 308–16

    Google Scholar 

  22. Nakahara H, Higashida A, Nogami J, Iwanaga K, Ueshima H, Sawaguchi H, Haraguchi R, Muraki M, Kubo Y, Nakajima S (1997) Effect of roxithromycin on cytokine production by peripheral monocytes derived from patients with bronchial asthma. Jpn J Antibiotics 50(Suppl): 113–15 ( in Japanese )

    Google Scholar 

  23. Kohyama T, Takizawa H, Kawasaki S, Akiyama N, Sato M, Ito K (1999) Fourteenmember macrolides inhibit IL-8 release by human eosinophils from atopic donors. Antimicrob Agents Chemother 43: 907–11

    PubMed  Google Scholar 

  24. Abe S, Nakamura H, Inoue S, Takeda H, Saito H, Kato S, Mukaida N, Matsushima K, Tomoike H (2000) Interleukin-8 gene repression by clarithromycin is mediated by the activator protein-1 binding site in human bronchial epithelial cells. Am J Respir Cell Mol Biol 22: 51–60

    PubMed  Google Scholar 

  25. Desaki M, Takizawa H, Ohtoshi T, Kasama T, Kobayashi K, Sunazuka T, Omura S, Yamamoto K, Ito K (2000) Erythromycin suppresses nuclear factor-kappa B and activator protein-1 activation in human bronchial epithelial cells. Biochem Biophys Res Commun 267: 124–8

    Article  PubMed  Google Scholar 

  26. Miyanohara T, Ushikai M, Matsune S, Ueno K, Katahira S, Kurono Y (2000) Effects of clarithromycin on cultured human nasal epithelial cells and fibroblasts. Laryngoscope 110(1): 126–31

    Article  PubMed  Google Scholar 

  27. Kikuchi T, Hagiwara K, Honda Y, Gomi K, Kobayashi T, Takahashi H, Tokue Y, Watanabe A, Nukiwa T (2002) Clarithromycin suppresses lipopolysaccharide-induced interleukin-8 production by human monocytes through AP-1 and NF-kappa B transcription factors. J Antimicrob Chemother 49(5): 745–55

    Article  PubMed  Google Scholar 

  28. Ichiyama T, Nishikawa M, Yoshitomi T, Hasegawa S, Matsubara T, Hayashi T, Furukawa S (2001) Clarithromycin inhibits NF-kappaB activation in human peripheral blood mononuclear cells and pulmonary epithelial cells. Antimicrob Agents Chemother 45(1): 44–7

    Article  PubMed  Google Scholar 

  29. Desaki M, Okazaki H, Sunazuka T, Omura S, Yamamoto K, Takizawa H (2004) Molecular mechanisms of anti-inflammatory action of erythromycin in human bronchial epithelial cells: possible role in the signaling pathway that regulates nuclear factor-kappaB activation. Antimicrob Agents Chemother 48(5): 1581–5

    Article  PubMed  Google Scholar 

  30. Hamada K, Kita E, Sawaki M, Mikasa K, Narita N (1995) Antitumor effect of erythromycin in mice. Chemotherapy 41(1): 59–69

    PubMed  Google Scholar 

  31. Ortega E, Escobar MA, Gaforio JJ, Algarra I, Alvarez De Cienfuegos G (2004) Modification of phagocytosis and cytokine production in peritoneal and splenic murine cells by erythromycin A, azithromycin and josamycin. J Antimicrob Chemother 53(2): 367–70

    Article  PubMed  Google Scholar 

  32. Dalhoff A, Shalit I (2003) Immunomodulatory effects of quinolones. Lancet Infect Dis 3(6): 359–71

    Article  PubMed  Google Scholar 

  33. Khan AA, Slifer TR, Araujo FG, Suzuki Y, Remington JS (2000) Protection against lipopolysaccharide-induced death by fluoroquinolones. Antimicrob Agents Chemother 44(11): 3169–73

    Article  PubMed  Google Scholar 

  34. Broide E, Douer D, Shaked N, Yellin A, Lieberman Y, Rosen N, Segev S, Rubinstein E (1992) Effect of short-term therapy with ciprofloxacin, ceftriaxone and placebo on human peripheral WBC and marrow-derived granulocyte-macrophage progenitor cells (CFU-GM) Eur J Haematol 48(5): 276–7

    PubMed  Google Scholar 

  35. D’Agostino P, La Rosa M, Barbera C, Arcoleo F, Di Bella G, Milano S, Cillari E (1998) Doxycycline reduces mortality to lethal endotoxemia by reducing nitric oxide synthesis via an interleukin-10-independent mechanism. J Infect Dis 177(2): 489–92

    PubMed  Google Scholar 

  36. Ramamurthy NS, Rifkin BR, Greenwald RA, Xu JW, Liu Y, Turner G, Golub LM, Vernillo AT (2002) Inhibition of matrix metalloproteinase-mediated periodontal bone loss in rats: a comparison of 6 chemically modified tetracyclines. J Periodontol 73(7): 726–34

    Article  PubMed  Google Scholar 

  37. Kondo Y, Torii K, Omura S, Itoh Z (1988) Erythromycin and its derivatives with motilin-like biological activities inhibit the specific binding of 125I-motilin to duodenal muscle. Biochem Biophys Res Commun 150: 877–82

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Birkhäuser Verlag Basel/Switzerland

About this chapter

Cite this chapter

Takizawa, H. (2005). Cytokines. In: Rubin, B.K., Tamaoki, J. (eds) Antibiotics as Anti-Inflammatory and Immunomodulatory Agents. Progress in Inflammation Research. Birkhäuser Basel. https://doi.org/10.1007/3-7643-7310-5_5

Download citation

  • DOI: https://doi.org/10.1007/3-7643-7310-5_5

  • Publisher Name: Birkhäuser Basel

  • Print ISBN: 978-3-7643-5925-6

  • Online ISBN: 978-3-7643-7310-8

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics