The cytoprotective interactions of antibiotics with human ciliated airway epithelium

  • Charles Feldman
  • Ronald Anderson
Part of the Progress in Inflammation Research book series (PIR)


Fluticasone Propionate Human Neutrophil Antimicrob Agent Airway Epithelium Macrolide Antibiotic 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Feldman C (2000) Nonspecific host defenses: Mucociliary clearance and cough. In: MS Niederman, GA Sarosi, J Glassroth (eds): Respiratory infections. Williams and Wilkins, Philadelphia, 13–25Google Scholar
  2. 2.
    Feldman C, Anderson R, Rutman A, Cole PJ, Wilson R (1998) Human ciliated epithelium in vitro — mechanisms of injury and protection. In: GL Baum, Z Priel, Y Roth, N Liron, EJ Ostfeld (eds): Cilia, mucus, and mucociliary interactions. Marcel Dekker, Inc., New York, 461–71Google Scholar
  3. 3.
    Wilson R, Dowling RB, Jackson AD (1996) The biology of bacterial colonization and invasion of the respiratory mucosa. Eur Respir J 9: 1523–30CrossRefPubMedGoogle Scholar
  4. 4.
    Feldman C, Read R, Rutman A, Jeffery PK, Brain A, Lund V, Mitchell TJ, Andrew PW, Boulnois GJ, Todd HC et al (1992) The interaction of Streptococcus pneumoniae with intact human respiratory mucosa in vitro. Eur Respir J 5: 576–83PubMedGoogle Scholar
  5. 5.
    Feldman C, Anderson R, Theron AJ, Cole P, Wilson R (2001) The cytoprotective effects of macrolides, azalides, and ketolides on human ciliated epithelium in vitro. In: M Salathe (ed): Cilia and mucus. From development to respiratory defense. Marcel Dekker, Inc., New York, 145–53Google Scholar
  6. 6.
    Tamaoki J, Chiyotani A, Sakai N, Takeyama K, Takizawa T (1992) Effect of erythromycin on ciliary motility in rabbit airway epithelium in vitro. J Antimicrob Chemother 29: 173–8PubMedGoogle Scholar
  7. 7.
    Sugiura Y, Ohashi Y, Nakai Y (1997) Roxythromycin stimulates the mucociliary activity of the Eustachian tube and modulates neutrophil activity in the healthy guinea pig. Acta Otolaryngol (Stockh) (Suppl) 531: 34–8Google Scholar
  8. 8.
    Nakano T, Ohashi Y, Tanaka A, Kakinoki Y, Washio Y, Nakai Y (1998) Roxythromycin reinforces epithelial defence function in rabbit trachea. Acta Otolaryngol (Stockh) (Suppl) 538: 233–8Google Scholar
  9. 9.
    Rutman A, Dowling R, Wills P, Feldman C, Cole PJ, Wilson R (1998) Effect of dirithromycin on Haemophilus influenzae infection of the respiratory mucosa. Antimicrob Agents Chemother 42: 772–8PubMedGoogle Scholar
  10. 10.
    Tsang KW, Rutman A, Kanthakumar K, Belcher J, Lund V, Roberts DE, Read RC, Cole PJ, Wilson R (1993) Haemophilus influenzae infection of human respiratory mucosa in low concentrations of antibiotics. Am Rev Respir Dis 148: 201–7PubMedGoogle Scholar
  11. 11.
    Dowling RB, Rayner CFJ, Rutman A, Jackson AD, Kanthakumar K, Dewar A, Taylor GW, Cole PJ, Johnson M, Wilson R (1997) Effect of salmeterol on Pseudomonas aeruginosa infection of respiratory mucosa. Am J Respir Crit Care Med 155: 327–36PubMedGoogle Scholar
  12. 12.
    Takeyama K, Tamaoki J, Chiyotani A, Tagaya E, Konno K (1993) Effect of macrolide antibiotics on ciliary motility in rabbit airway epithelium in vitro. J Pharm Pharmacol 45: 756–8PubMedGoogle Scholar
  13. 13.
    Lagrou K, Peetermans WE, Jorissen M, Verhaegen J, Van Damme J, Van Eldere J (2000) Sub-inhibitory concentrations of erythromycin reduce pneumococcal adherence to respiratory epithelial cells in vitro. J Antimicrob Chemother 46: 717–23CrossRefPubMedGoogle Scholar
  14. 14.
    Spreer A, Kerstan H, Bottcher T, Gerber J, Siemer A, Zysk G, Mitchell TJ, Eiffert H, Nau R (2003) Reduced release of pneumolysin by Streptococcus pneumoniae in vitro and in vivo after treatment with nonbacteriolytic antibiotics in comparison to ceftriaxone. Antimicrob Agents Chemother 47: 2649–54CrossRefPubMedGoogle Scholar
  15. 15.
    Tanaka E, Kanthakumar K, Cundell DR, Tsang KWT, Taylor GW, Kuze F, Cole PJ, Wilson R (1994) The effect of erythromycin on Pseudomonas aeruginosa and neutrophil mediated epithelial damage. J Antimicrob Chemother 33: 765–75PubMedGoogle Scholar
  16. 16.
    Dowling RB, Johnson M, Cole PJ, Wilson R (1998) Effect of salmeterol on Haemophilus influenzae infection of respiratory mucosa in vitro. Eur Respir J 11: 86–90CrossRefPubMedGoogle Scholar
  17. 17.
    Dowling RB, Johnson M, Cole PJ, Wilson R (1999) Effect of fluticasone propionate and salmeterol on Pseudomonas aeruginosa infection of the respiratory mucosa in vitro. Eur Respir J 14: 363–9CrossRefPubMedGoogle Scholar
  18. 18.
    Dowling RB, Johnson M, Cole PJ, Wilson R (1999) The effect of rolipram, a type IV phosphodiesterase inhibitor, on Pseudomonas aeruginosa infection of respiratory mucosa. J Pharmacol Exp Ther 282: 1565–71Google Scholar
  19. 19.
    Feldman C, Anderson R, Theron AJ, Ramafi G, Cole PJ, Wilson R (1997) Roxithromycin, clarithromycin, and azithromycin attenuate the injurious effects bioactive phospholipids, on human respiratory epithelium in vitro. Inflammation 21: 655–65CrossRefPubMedGoogle Scholar
  20. 20.
    Feldman C, Anderson R, Theron A, Mokgobu I, Cole PJ, Wilson R (1999) The effect of ketolides on bioactive phospholipid-induced injury to human ciliated epithelium in vitro. Eur Respir J 13: 1022–8CrossRefPubMedGoogle Scholar
  21. 21.
    Mokgobu I, Theron AJ, Anderson R, Feldman C (1999) The ketolide antimicrobial agent HMR-3004 inhibits neutrophil superoxide production by a membrane-stabilizing mechanism. International J Immunopharmacology 21: 365–77CrossRefGoogle Scholar
  22. 22.
    Theron AJ, Feldman C, Anderson R (2000) Investigation of the anti-inflammatory and membrane-stabilizing potential of spiramycin in vitro. J Antimicrob Chemother 46: 269–71CrossRefPubMedGoogle Scholar
  23. 23.
    Feldman C, Anderson R, Theron AJ, Steel HC, van Rensburg CEJ, Cole PJ, Wilson (2001) Vitamin E attenuates the injurious effects of bioactive phospholipids on human ciliated epithelium in vitro. Eur Respir J 18: 122–9CrossRefPubMedGoogle Scholar
  24. 24.
    Gutierrez-Cabano CA, Raynald AC (1999) Gastroprotective effect of intragastric clarithromycin again damage induced by ethanol in rats. Dig Dis Sci 44: 1721–31CrossRefPubMedGoogle Scholar
  25. 25.
    Dallegri F, Ottonello L (1997) Tissue injury in neutrophilic inflammation. Inflamm Res 46: 382–91CrossRefPubMedGoogle Scholar
  26. 26.
    Witko-Sarsat V, Rieu P, Descamps-Latscha B, Lesavre P, Halbwachs-Mecarelli L (2000) Neutrophils: molecules and pathophysiological aspects. Lab Invest 80: 617–53PubMedGoogle Scholar
  27. 27.
    Feldman C, Anderson R, Kanthakumar K, Vargas A, Cole PJ, Wilson R (1994) Oxidantmediated ciliary dysfunction in human respiratory epithelium. Free Rad Biol Med 17: 1–10CrossRefPubMedGoogle Scholar
  28. 28.
    Lewis S, Berg JR, Kleine TJ (1995) Modulation of epithelial permeability by extracellular molecules. Physiol Rev 75: 561–89PubMedGoogle Scholar
  29. 29.
    Ichikawa Y, Ninomiya H, Koga H, Tanaka M, Kinoshita M, Tokuna N, Yano T, Oizumi K (1992) Erythromycin reduces neutrophils and neutrophil-derived elastolytic-like activity in the lower respiratory tract of bronchiolitis patients. Am Rev Resp Dis 146: 196–203PubMedGoogle Scholar
  30. 30.
    Oda H, Kadota J, Kohno S, Hara K (1994) Erythromycin inhibits neutrophil chemotaxis in bronchoalveoli of diffuse panbronchiolitis. Chest 106: 1116–23PubMedGoogle Scholar
  31. 31.
    Ianaro A, Ialenti A, Maffia P, Sautebin L, Rombolo L, Carnuccio R, Iuvone T, D’Acquisto F, Di Rosa M (2000) Anti-inflammatory activity of macrolide antibiotics. J Pharmacol Exp Ther 292: 156–63PubMedGoogle Scholar
  32. 32.
    Lin HC, Wang CH, Liu CY, Yu CT, Kuo HP (2000) Erythromycin inhibits beta 2-integrins (CD11b/CD18) expression, interleukin-8 release and intracellular oxidative metabolism in neutrophils. Respir Med 94: 654–60CrossRefPubMedGoogle Scholar
  33. 33.
    Kohyama T, Takizawa H, Kawasaki S, Akiyama N, Sato M, Ito K (1999) Fourteen-member macrolides inhibit interleukin-8 release by human eosinophils from atopic donors. Antimicrob Agents Chemother 43: 907–11PubMedGoogle Scholar
  34. 34.
    Kikuchi T, Hagiwara K, Honda Y, Gomi K, Kobayashi T, Takahashi H, Tokue Y, Watanabe A, Nukiwa T (2002) Clarithromycin suppresses lipolysaccharide-induced interleukin-8 production by human monocytes through AP-1 and NF-kappa B transcription factors. J Antimicrob Chemother 49: 745–55CrossRefPubMedGoogle Scholar
  35. 35.
    Kawasaki S, Takizawa H, Ohtoshi T, Takeuchi N, Kohyama T, Nakamura H, Kasama T, Kobayashi K, Nakahara K, Morita Y et al (1998) Roxithromycin inhibits cytokine production by and neutrophil attachment to bronchial epithelial cells in vitro. Antimicrob Agents Chemother 42: 1499–1502PubMedGoogle Scholar
  36. 36.
    Abe S, Nakamura H, Inoue S, Takeda H, Saito H, Kato S, Mukaida N, Matsushima K, Tomoike H (2000) Interleukin-8 gene repression by clarithromycin is mediated by the activator protein-1 binding site in human bronchial epithelial cells. Am J Resp Cell Mol Biol 22: 51–60Google Scholar
  37. 37.
    Takaki M, Ushikai M, Deguchi K, Nishimoto K, Matsune S, Kurono Y (2003) The role of nuclear factor-kappa B in interleukin-8 expression by human adenoidal fibroblasts. Laryngoscope 113: 1378–85CrossRefPubMedGoogle Scholar
  38. 38.
    Strickland I, Kisich H, Hauk PJ, Vottero A, Chrousos GP, Klemm DJ, Leung DYM (2001) High constitutive glucocorticoid receptor β in human neutrophils enables them to reduce their spontaneous rate of cell death in response to corticosteroids. J Exp Med 193: 585–93CrossRefPubMedGoogle Scholar
  39. 39.
    Li YJ, Azuma A, Takahashi S, Usuki J, Matsuda K, Aoyama A, Kudo S (2002) Fourteenmembered ring macrolides inhibit vascular cell adhesion molecule 1 messenger RNA induction and leukocyte migration: role in preventing lung injury and fibrosis in bleomycin-challenged mice. Chest 122: 2137–45CrossRefPubMedGoogle Scholar
  40. 40.
    Anderson R (1989) Erythromycin and roxithromycin potentiate human neutrophil locomotion by inhibition of leukoattractant-activated superoxide generation and autooxidation. J Infect Dis 159: 966–73PubMedGoogle Scholar
  41. 41.
    Hand WL, Hand DL, King-Thomson NL (1990) Antibiotic inhibition of the respiratory burst in human polymorphonuclear leukocytes. Antimicrob Agents Chemother 34: 863–70PubMedGoogle Scholar
  42. 42.
    Perry DK, Hand WL, Edmondson DE, Lambeth JD (1992) Role of phospholipase Dderived diarydyl-glycerol in the activation of the human neutrophil respiratory burst oxidase. J Immunol 149: 2749–58PubMedGoogle Scholar
  43. 43.
    Umeki S (1993) Anti-inflammatory action of erythromycin: its inhibitory effect on neutrophil NADPH-oxidase activity. Chest 104: 1191–3PubMedGoogle Scholar
  44. 44.
    Anderson R, Theron AJ, Feldman C (1996) Membrane-stabilizing, anti-inflammatory interactions of macrolides with neutrophils. Inflammation 20: 693–705CrossRefPubMedGoogle Scholar
  45. 45.
    Abdelghaffar H, Vazifeh D, Labro MT (1997) Erythromycin A-derived macrolides modify the functional activities of human neutrophils by altering the phospholipase D-phosphatidate phosphohydrolase transduction pathway. J Immunol 159: 3995–4005PubMedGoogle Scholar
  46. 46.
    Kohri K, Tamaoki J, Kondo M, Aoshiba K, Tagaya E, Nagai A (2000) Macrolide antibiotics inhibit nitric oxide generation by rat pulmonary alveolar macrophages. Eur Respir J 15: 62–7PubMedGoogle Scholar
  47. 47.
    Shao DM, Segal AW, Dekker LV (2003) Lipid rafts determine efficiency of NADPH oxidase activation in neutrophils. Febs Lett 550: 101–6CrossRefPubMedGoogle Scholar
  48. 48.
    Chilton FH, Averill FJ, Hubbard WC, Fonteh AN, Triggiana M, Liu MC (1996) Antigen-induced generation of lysophospholipids in human airways. J Exp Med 183: 2235–45CrossRefPubMedGoogle Scholar
  49. 49.
    Ras GJ, Anderson R, Taylor GW, Savage JE, van Niekerk E, Joone G, Koornhof HJ, Saunders J, Wilson R, Cole PJ (1992) Clindamycin, erythromycin, and roxithromycin inhibit the proinflammatory interactions of Pseudomonas aeruginosa pigments with human neutrophils in vitro. Antimicrob Agents Chemother 36: 1236–40PubMedGoogle Scholar
  50. 50.
    Gorrini M, Lupi A, Viglio S, Pamparana F, Cetta G, Iadarola P, Powers JC, Luisetti M (2001) Inhibition of human neutrophil elastase by erythromycin and flurythromycin, two macrolide antibiotics. Am J Resp Cell Mol Biol 25: 492–9Google Scholar
  51. 51.
    Woolhouse IS, Bayley DL, Stockley RA (2002) Sputum chemotactic activity in chronic obstructive pulmonary disease: effect of alpha (1)-antitrypsin deficiency and the role of leukotriene B4 and interleukin 8. Thorax 57: 709–14CrossRefPubMedGoogle Scholar
  52. 52.
    Lieberman J (2000) Augmentation therapy reduces frequency of lung infections in antitrypsin deficiency — A new hypothesis with supporting data. Chest 118: 1480–5CrossRefPubMedGoogle Scholar
  53. 53.
    Hiemstra PS (2002) Novel roles of protease inhibitors in infection and inflammation. Biochem Soc Transact 30: 116–20CrossRefGoogle Scholar
  54. 54.
    Greene C, Taggart C, Lowe G, Gallagher P, McElvaney N, O’Neill S (2003) Local impairment of anti-neutrophil elastase activity in community-acquired pneumonia. J Infect Dis 188: 769–76CrossRefPubMedGoogle Scholar
  55. 55.
    Lim YP, Bendelja K, Opal SM, Siryaporn E, Hixson DC, Palardy JE (2003) Correlation between mortality and the levels of inter-alpha inhibitors in the plasma of patients with severe sepsis. J Infect Dis 188: 919–26CrossRefPubMedGoogle Scholar
  56. 56.
    Aoshiba K, Nayai A, Konno K (1995) Erythromycin shortens neutrophil survival by accelerating apoptosis. Antimicrob Agents Chemother 39: 872–7PubMedGoogle Scholar
  57. 57.
    Yamaryo T, Oishi K, Yoshimine H, Tsuchihashi Y, Matsushima K, Nagatake T (2003) Fourteen-member macrolides promote the phosphatidylserine receptor-dependent phagocytosis of apoptotic neutrophils by alveolar macrophages. Antimicrob Agents Chemother 47: 48–53CrossRefPubMedGoogle Scholar
  58. 58.
    Sofer D, Gilboa-Garber N, Belz A, Garber NC (1999) “Subinhibitory” erythromycin represses production of Pseudomonas aeruginosa lectins, autoinducer and virulence factors. Chemother 45: 335–41CrossRefGoogle Scholar
  59. 59.
    Jain A, Sangal L, Basal E, Kaushal GP, Agarwal SK (2002) Anti-inflammatory effects of erythromycin and tetracycline on Propionobacterium acnes induced production of chemotactic factors and reactive oxygen species by human neutrophils. Dermatol Online J 8: 2Google Scholar
  60. 60.
    Musher DM, Phan HB, Baughn R (2001) Protection against bacteremic pneumococcal infection by antibody to pneumolysin. J Infect Dis 183: 827–30CrossRefPubMedGoogle Scholar
  61. 61.
    Jounblat R, Kadioglu A, Mitchell TJ, Andrew PW (2003) Pneumococcal behavior and host responses during bronchopneumonia are affected differently by the cytolytic and complement-activating activities of pneumolysin. Infect Immun 71: 1813–9CrossRefPubMedGoogle Scholar

Copyright information

© Birkhäuser Verlag Basel/Switzerland 2005

Authors and Affiliations

  • Charles Feldman
    • 1
  • Ronald Anderson
    • 2
  1. 1.Division of Pulmonology Department of Medicine, Faculty of Health SciencesUniversity of the Witwatersrand Medical SchoolJohannesburgSouth Africa
  2. 2.MRC Unit for Inflammation and Immunity Department of ImmunologyUniversity of Pretoria, Pretoria, and Tshwane Academic Division of the National Health Laboratory ServiceSouth Africa

Personalised recommendations