Antibiotics, inflammation and its resolution: An overview

  • Michael J. Parnham
Part of the Progress in Inflammation Research book series (PIR)


Antimicrob Agent Macrolide Antibiotic Fusidic Acid Neutrophil Apoptosis Apoptotic Neutrophil 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Witko-Sarsat V, Rieu P, Descamps-Latscha B, Lesavre P, Halbwachs-Mecarelli L (2000) Neutrophils: molecules, functions and pathophysiological aspects. Lab Invest 80:617–53PubMedGoogle Scholar
  2. 2.
    Kobayashi SD, Voyich JM, DeLeo FR (2003) Regulation of the neutrophil-mediated inflammatory response to infection. Microbes Infection 5: 1337–44CrossRefGoogle Scholar
  3. 3.
    Gilroy DW, Colville-Nash PR, McMaster S, Sawatzky DA, Willoughby DA, Lawrence T (2003) Inducible cyclooxygenase-derived 15-deoxy(Delta)12–14 PGJ2 brings about acute inflammatory resolution in rat pleurisy by inducing neutrophil and macrophage apoptosis. FASEB J 17: 2269–71PubMedGoogle Scholar
  4. 4.
    Savill J, Haslett C (1999) Granulocytes. In: JD Winkler (ed): Apoptosis and inflammation. Birkhäuser Verlag, Basel, 53–84Google Scholar
  5. 5.
    Labro M-T (2002) Cellular accumulation of macrolide antibiotics. Intracellular bioactivity. In: W Schönfeld, HA Kirst (eds): Macrolide antibiotics. Birkhäuser Verlag, Basel, 37–52Google Scholar
  6. 6.
    Čulić O, Eraković V, Parnham MJ (2001) Anti-inflammatory effects of macrolide antibiotics. Eur J Pharmacol 429: 209–29CrossRefPubMedGoogle Scholar
  7. 6a.
    Abeyama K, Kawahara K, Iino S, Hamada, T Arimura S Matsushita K, Nakajima T, Maruyama I (2003) Antibiotic cyclic AMP signalling by “primed” leukocytes confers anti-inflammatory cytoprotection. J Leuk Biol 74: 908–15CrossRefGoogle Scholar
  8. 7.
    Bermudez LE, Inderlied C, Young LS (1991) Stimulation with cytokines enhances penetration of azithromycin into human macrophages. Antimicrob Agents Chemother 35: 2625–9PubMedGoogle Scholar
  9. 8.
    Gladue RP, Bright GM, Isaacson E, Newborg MF (1989) In vitro and in vivo uptake of azithromycin (CP-62,993) by phagocytic cells: Possible mechanism of delivery and release at sites of infection. Antimicrob Agents Chemother 33: 277–82PubMedGoogle Scholar
  10. 9.
    Fieta A, Merlini C, Grassi GC (1997) Requirements for intracellular accumulation and release of clarithromycin and azithromycin by human phagocytes. J Chemother 9: 23–31PubMedGoogle Scholar
  11. 10.
    Hand WL, Corwin RW, Steinberg TH, Grossman GD (1984) Uptake of antibiotics by human alveolar macrophages. Am Rev Respir Dis 129: 933–7PubMedGoogle Scholar
  12. 10a.
    Easmon CS, Crane JP (1985) Uptake of ciprofloxacin by human neutrophils. J Antimicrob Chemother 16: 67–73PubMedGoogle Scholar
  13. 11.
    Muller WA (2003) Leukocyte-endothelial-cell interactions in leukocyte transmigration and the inflammatory response. Trends Immunol 24: 327–34CrossRefPubMedGoogle Scholar
  14. 12.
    Okubo J (1997) Macrolides reduce the expression of surface Mac-1 molecule on neutrophil. Kurume Med J 44: 115–23PubMedGoogle Scholar
  15. 13.
    Lin HC, Wang CH, Liu CY, Yu CT, Kuo HP (2000) Erythromycin inhibits beta2-integrins (CD11b/CD18) expression, interleukin-8 release and intracellular oxidative metabolism in neutrophils. Respir Med 94: 654–60CrossRefPubMedGoogle Scholar
  16. 14.
    Enomoto F, Ichikawa G, Nagaoka I, Yamashita T (1996) Evaluation of the effect of erythromycin on otitis media with effusion in experimental rat models. Nippon Jibiinkoka Gakkai Kaiho 99: 1126–35PubMedGoogle Scholar
  17. 15.
    Enomoto F, Ichikawa G, Nagaoka I, Yamashita T (1998) Effect of erythromycin on otitis media with effusion in experimental rat model. Acta Otolaryngol (Suppl) 539: 57–60CrossRefGoogle Scholar
  18. 16.
    Kusano S, Kadota J, Kohno S, Iida K, Kawakami K, Morikawa T, Hara K (1995) Effect of roxithromycin on peripheral neutrophil adhesion molecules in patients with chronic lower respiratory tract disease. Respiration 62: 217–22PubMedGoogle Scholar
  19. 17.
    Kawasaki S, Takizawa H, Ohtoshi T, Takeuchi N, Kohyama T, Nakama K, Kasama T, Kobayashi K, Nakahara K, Morita Y et al (1998) Roxithromycin inhibits cytokine production by and neutrophil attachment to human bronchial epithelial cells in vitro. Antimicrob Agents Chemother 42: 1499–502PubMedGoogle Scholar
  20. 18.
    Matsuoka N, Eguchi K, Kawakami A, Tsuboi M, Kawabe Y, Aoyagi T, Nagataki S (1996) Inhibitory effect of clarithromycin on costimulatory molecule expression and cytokine production by synovial fibroblast-like cells. Clin Exp Immunol 104: 501–8CrossRefPubMedGoogle Scholar
  21. 19.
    Suzuki H, Ikeda K (2002) Mode of action of long-term low-dose macrolide therapy for chronic sinusitis in the light of neutrophil recruitment. Curr Drug Targets Inflamm Allergy 1: 117–26CrossRefPubMedGoogle Scholar
  22. 20.
    Mitsuyama T, Hidaka K, Furuno T, Hara N (1997) Neutrophil-induced endothelial cell damage: inhibition by a 14-membered ring macrolide through the action of nitric oxide. Int Arch Allergy Immunol 114: 111–15PubMedGoogle Scholar
  23. 21.
    Mitsuyama T, Hidaka K, Furuno T, Hara N (1998) Release of nitric oxide and expression of constitutive nitric oxide synthase of human endothelial cells: enhancement by a 14-membered ring macrolide. Mol Cell Biochem 181: 157–61CrossRefPubMedGoogle Scholar
  24. 22.
    Lee SJ, Wegner SA, McGarigle CJ, Bierer BE, Antin JH (1997) Treatment of chronic graft-versus-host disease with clofazimine. Blood 89: 2298–302PubMedGoogle Scholar
  25. 23.
    Baranda L, Torres-Alvarez B, Cortes-Franco R, Moncada B, Portales-Perez DP, Gonzalez-Amaro R (1997) Involvement of cell adhesion and activation molecules in the pathogenesis of erythema dyschromicum perstans (ashy dermatitis). The effect of clofazimine therapy. Arch Dermatol 133: 325–29CrossRefPubMedGoogle Scholar
  26. 24.
    Esterly NB, Furey NL, Flanagan LE (1978) The effect of antimicrobial agents on leukocyte chemotaxis. J Invest Dermatol 70: 51–5CrossRefPubMedGoogle Scholar
  27. 25.
    Nelson S, Summer WR, Terry PB, Warr GA, Jakab GJ (1987) Erythromycin-induced suppression of pulmonary antibacterial defenses: a potential mechanism of superinfection in the lung. Am Rev Respir Dis 136: 1207–12PubMedGoogle Scholar
  28. 26.
    Labro M-T (2000) Interference of antibacterial agents with phagocytic functions: Immunomodulation or “immuno-fairy tales”? Clin Microbiol Rev 13: 615–50CrossRefPubMedGoogle Scholar
  29. 27.
    Van Rensburg CEJ, Gatner EMS, Inkamp FMJH, Anderson R (1982) Effects of clozamine alone or combined with dapsone on neutrophil and lymphocyte functions in normal individuals and patients with lepromatous leprosy. Antimicrob Agents Chemother 21: 693–8PubMedGoogle Scholar
  30. 28.
    Scaglione F, Rossoni G (1998) Comparative anti-inflammatory effects of roxithromycin azithromycin and clarithromycin. J Antimicrob Chemother 41Suppl B: 47–50CrossRefGoogle Scholar
  31. 29.
    Tamaoki J, Sakai N, Tagaya E, Konno K (1994) Macrolide antibiotics protect against endotoxin-induced vascular leakage and neutrophil accumulation in rat trachea. Antimicrob Agents Chemother 38: 1641–3PubMedGoogle Scholar
  32. 30.
    Tamaoki J, Takeyama K, Yamawaki I, Kondo M, Konno K (1997) Lipopolysaccharide-induced goblet cell hypersecretion in the guinea pig trachea: inhibition by macrolides. Am J Physiol 272: L15–L19PubMedGoogle Scholar
  33. 31.
    Tamaoki J, Kondo M, Kohri K, Aoshiba K, Tagaya E, Nagai A (1999) Macrolide antibiotics protect against immune complex-induced lung injury in rats: role of nitric oxide from alveolar macrophages. J Immunol 163: 2909–15PubMedGoogle Scholar
  34. 32.
    Xu G, Fujita J, Negayama K, Yuube K, Hojo S, Yamaji Y, Kawanishi K, Takahara J (1996) Effects of macrolide antibiotics on macrophage functions. Microbiol Immunol 40: 473–9PubMedGoogle Scholar
  35. 33.
    Kita E, Sawaki M, Nishikawa F, Mikasa K, Yagyu Y, Takeuchi S, Yasui K, Narita N, Kashiba S (1990) Enhanced interleukin production after long-term administration of erythromycin stearate. Pharmacology 41: 177–83PubMedGoogle Scholar
  36. 34.
    Kita E, Sawaki M, Mikasa K, Hamada K, Takeuchi S, Maeda K, Narita N (1993) Alterations of host response by a long-term treatment of roxithromycin. J Antimicrob Chemother 32: 285–94PubMedGoogle Scholar
  37. 35.
    Sugiura Y, Ohashi Y, Nakai Y (1997) Roxithromycin stimulates the mucociliary activity of the Eustachian tube and modulates neutrophil activity in the healthy guinea pig. Acta Otolaryngol (Stockh) (Suppl) 531: 34–8Google Scholar
  38. 35a.
    Riesbeck K (2002) Immunomodulating activity of quinolones: review. J Chemother 14:3–12PubMedGoogle Scholar
  39. 36.
    Hall IH, Schwab UE, Ward ES, Ives TJ (2003) Effects of moxifloxacin in zymogen A or S. aureus stimulated human THP-1 monocytes on the inflammatory process and the spread of infection. Life Sci 73: 2675–85CrossRefPubMedGoogle Scholar
  40. 37.
    Čulić O, Eraković V, Čepelak I, Barišić K, Brajša K, Ferenčić Ž, Galović R, Glojnarić I, Manojlović Z, Munić V et al (2002) Azithromycin modulates neutrophil function and circulating inflammatory mediators in healthy human subjects. Eur J Pharmacol 450:277–89CrossRefPubMedGoogle Scholar
  41. 38.
    Tamaoki J, Gunwa H, Kondo M, Isono K, Nishimura K, Nagai A (1998) Effects of macrolide antibiotics on iNOS gene expression and NO production by alveolar macrophages. Jpn J Antibiot 51(Suppl. 1): 12–14PubMedGoogle Scholar
  42. 39.
    Kohri K, Tamaoki J, Kondo M, Aoshiba K, Tagaya E, Nagai A (2000) Macrolide antibiotics inhibit nitric oxide generation by rat pulmonary alveolar macrophages. Eur Respir J 15: 62–7PubMedGoogle Scholar
  43. 40.
    Ianaro A, Ialenti A, Maffia P, Sautebin L, Rombola L, Carnuccio R, D’Acquisto F, Di Rosa M (2000) Anti-inflammatory activity of macrolide antibiotics. J Pharmacol Exp Ther 292: 156–63PubMedGoogle Scholar
  44. 41.
    Terao H, Asano K, Kanai K, Kyo Y, Watanabe S, Hisamitsu T, Suzaki H (2003) Suppressive activity of macrolide antibiotics on nitric oxide production by lipopolysaccharide stimulation in mice. Mediators Inflamm 12: 195–202CrossRefPubMedGoogle Scholar
  45. 42.
    Pellacini F, Botta D, Romagnano S, Moriggi E, Pradella L (2002) Macrolides with anti-inflammatory activity. US Patent No. 6,455,576Google Scholar
  46. 43.
    Mikasa K, Kita E, Sawaki M, Kunimatsu M, Hamada K, Konishi M, Kashiba S, Narita N (1992) The anti-inflammatory effects of erythromycin in zymosan-induced peritonitis of mice. J Antimicrob Chemother 30: 339–48PubMedGoogle Scholar
  47. 44.
    Agen C, Danesi R, Blandizzi C, Costa M, Stacchini B, Favini P, Del Tacca M (1993) Macrolide antibiotics as anti-inflammatory agents: roxithromycin in an unexpected role. Agents Actions 38: 85–90PubMedGoogle Scholar
  48. 45.
    Suzaki H, Asano K, Ohki S, Kanai K, Mizutani T, Hisamitsu T (1999) Suppressive activity of a macrolide antibiotic, roxithromycin, on proinflammatory cytokine production in vitro and in vivo. Mediators Inflamm 8: 199–204CrossRefPubMedGoogle Scholar
  49. 46.
    Majima Y (2002) Mucoactive medications and airway disease. Paediatr Respir Rev 3:104–9CrossRefPubMedGoogle Scholar
  50. 47.
    Rubin BK (2002) The pharmacologic approach to airway clearance: mucoactive agents. Respir Care 47: 818–22PubMedGoogle Scholar
  51. 48.
    Kaneko Y, Yanagihara K, Seki M, Kuroki M, Miyazaki Y, Hirakata Y, Mukae H, Tomono K, Kadota J, Kohno S (2003) Clarithromycin inhibits overproduction of muc5ac core protein in murine model of diffuse panbronchiolitis. Am J Physiol Lung Cell Mol Physiol 285: L847–53PubMedGoogle Scholar
  52. 49.
    Shimizu T, Shimizu S, Hattori R, Gabazza EC, Majima Y (2003) in vivo and in vitro effects of macrolide antibiotics on mucus secretion in airway epithelial cells. Am J Respir Crit Care Med 168: 581–7CrossRefPubMedGoogle Scholar
  53. 50.
    Parnham MJ, Orešković K (2004) Antibiotics for asthma? Ped Pulmonol (Suppl) 26: 52CrossRefGoogle Scholar
  54. 51.
    Carević O, Djokić S (1988) Comparative studies on the effects of erythromycin A and azithromycin upon extracellular release of lysosomal enzymes in inflammatory processes. Agents Actions 25: 124–31CrossRefPubMedGoogle Scholar
  55. 52.
    Oyama K, Sakuta T, Matsushita K, Maruyama I, Nagaoka S, Torii M (2000) Effects of roxithromycin on tumor necrosis factor-alpha-induced vascular endothelial growth factor expression in human periodontal ligament cells in culture. J Periodontol 71: 1546–53CrossRefPubMedGoogle Scholar
  56. 53.
    Chabot-Fletcher M (2000) Cellular signalling to NFěB: Role in inflammation and therapeutic promise. In: LG Letts, DW Morgan (eds): Inflammatory processes: Molecular mechanisms and therapeutic opportunities. Birkhäuser Verlag, Basel, 23–7Google Scholar
  57. 54.
    Manning AM (2000) Small molecule regulators of AP-1 and NFěB. In: LG Letts, DW Morgan (eds): Inflammatory processes: Molecular mechanisms and therapeutic opportunities. Birkhäuser Verlag, Basel, 23–7Google Scholar
  58. 55.
    Tak PP, Firestein GS (2001) NFěB: a key role in inflammatory diseases. J Clin Invest 107: 7–11PubMedGoogle Scholar
  59. 56.
    Seymour RA, Heasman PA (1995) Tetracyclines in the management of periodontal diseases: A review. J Clin Periodontol 22: 22–35PubMedGoogle Scholar
  60. 57.
    Stone M, Fortin PR, Pacheco-Tena C, Inman RD (2003) Should tetracycline treatment be used more extensively for rheumatoid arthritis? Meta-analysis demonstrates clinical benefit with reduction in disease activity. J Rheumatol 30: 2112–22PubMedGoogle Scholar
  61. 58.
    Nieman GF, Zerler BR (2001) A role for the anti-inflammatory properties of tetracyclines in the prevention of acute lung injury. Curr Med Chem 8: 317–25PubMedGoogle Scholar
  62. 59.
    Zernicke RF, Wohl GR, Greenwald RA, Moak SA, Leng W, Golub LM (1997) Administration of systemic matrix metalloproteinase inhibitors maintains bone mechanical integrity in adjuvant arthritis. J Rheumatol 24: 1324–31PubMedGoogle Scholar
  63. 60.
    Sewell KL, Breedveld F, Furrie E, O’Brien J, Brinckerhoff C, Dynesius-Trentham R, Nosaka Y, Trentham DE (1996) The effect of minocycline in rat models of inflammatory arthritis: correlation of arthritis suppression with enhanced T cell calcium flux. Cell Immunol 167: 195–204CrossRefPubMedGoogle Scholar
  64. 61.
    Kuzin II, Snyder JE, Ugine GD, Wu D, Lee S, Bushnell T, Insel RA, Young FM, Bottaro A (2001) Tetracyclines inhibit activated B cell function. Int Immunol 13: 921–31CrossRefPubMedGoogle Scholar
  65. 62.
    Yrjänheikki J, Tikka T, Keinänen R, Goldsteins G, Chan PH, Koistinaho J (1999) A tetracycline derivative, minocycline, reduces inflammation and protects against focal cerebral ischemia with a wide therapeutic window. Proc Natl Acad Sci USA 96: 13496–500CrossRefPubMedGoogle Scholar
  66. 63.
    Tikka T, Usenius T, Tenhunen M, Keinanen R, Koistinaho J (2001) Tetracycline derivatives and ceftriaxone, a cephalosporin antibiotic, protect neurons against apoptosis induced by ionizing radiation. J Neurochem 78: 1409–14CrossRefPubMedGoogle Scholar
  67. 64.
    Szczypka M, Obminska-Mrukowicz B (2003) Comparative effects of fluoroquinolones on subsets of T lymphocytes in normothermic and hyperthermic mice. J Vet Pharmacol Ther 26: 253–58CrossRefPubMedGoogle Scholar
  68. 65.
    Khan AA, Slifer TR, Araujo FG, Suzuki Y, Remington JS (2000) Protection against lipopolysaccharide-induced death by fluoroquinolones. Antimicrob Agents Chemother 44: 3169–173CrossRefPubMedGoogle Scholar
  69. 65a.
    Breban M, Fournier C, Gougerot-Pocidalo MA, Muffat-Joly M, Pocidalo JJ (1992) Protective effects of ciprofloxacin against type II collagen induced arthritis in rats. J Rheumatol 19: 216–22PubMedGoogle Scholar
  70. 66.
    Honda J, Okubo Y, Kusaba M, Kumagai M, Saruwatari N, Oizumi K (1998) Fosfomycin (FOM: 1R-2S-epoxypropylphosphonic acid) suppresses the production of IL-8 from monocytes via the suppression of neutrophil function. Immunopharmacol 39:149–55CrossRefGoogle Scholar
  71. 67.
    Yoneshima Y, Ichiyama T, Ayukawa H, Matsubara T, Furukawa S (2003). Fosfomycin inhibits NF-_B activation in U-937 and Jurkat cells. Int J Antimicrob Agents 21: 589–92CrossRefPubMedGoogle Scholar
  72. 68.
    Morikawa K, Zhang J, Nonaka M, Morikawa S (2002) Modulatory effect of macrolide antibiotics on the Th1-and Th2-type cytokine production. Int J Antimicrobial Agents 19: 53–9CrossRefGoogle Scholar
  73. 69.
    Labro MT (2002) Antibiotics as anti-inflammatory agents. Curr Opinion Invstig Drugs 3: 61–8Google Scholar
  74. 70.
    Kishi K, Hirai K, Hiramatsu K, Yamasaki T, Nasu M (1999) Clindamycin suppresses endotoxin released by ceftazidime-treated Escherichia coli O55:B5 and subsequent production of tumor necrosis factor alpha and interleukin-1ä. Antimicrob Agents Chemother 43: 616–22PubMedGoogle Scholar
  75. 71.
    Hirata N, Hiramatsu K, Kishi K, Yamasaki T, Ichimaya T, Nasu M (2001) Pretreatment of mice with clindamycin improves survival of endotoxic shock by modulating the release of inflammatory cytokines. Antimicrob Agents Chemother 45: 2638–42CrossRefPubMedGoogle Scholar
  76. 72.
    Di Marco R, Khademi M, Wallstrom E, Muhallab S, Nicoletti F, Olsson T (1999) Amelioration of experimental allergic neuritis by sodium fusidate (fusidin): suppression of IFN-gamma and IFN-alpha and enhancement of IL-10. J Autoimmun 13: 187–95CrossRefPubMedGoogle Scholar
  77. 73.
    Di Marco R, Puglisi G, Papaccio G, Nicoletti A, Patti F, Reggio A, Bendtzen K, Nicoletti F (2001) Sodium fusidate (fusidin) ameliorates the course of monophasic experimental allergic encephalomyelitis in the Lewis rat. Mult Scler 7: 101–4CrossRefPubMedGoogle Scholar
  78. 74.
    Van Zyl JM, Basson K, Kriegler A, van der Walt BJ (1991) Mechanisms by which clofazimine and dapsone inhibit the myeloperoxidase system. A possible correlation with their anti-inflammatory properties. Biochem Pharmacol 42: 599–608CrossRefPubMedGoogle Scholar
  79. 75.
    Dhondt A, Vanholder R, Waterloos MA, Glorieux G, De Smet R, Ringoir S (1998) In vitro effect of cefodizime, imipenemcilastin and co-trimoxazole on dexamethasone and cyclosporine A depressed phagocytosis. Infection 26: 120–5PubMedGoogle Scholar
  80. 76.
    Sandborn WJ, Feagan BG (2003) Review article: mild to moderate Crohn’s disease — defining the basis for a new treatment algorithm. Aliment Pharmacol Ther 18: 263–77CrossRefPubMedGoogle Scholar
  81. 77.
    Geletka R, St. Clair EW (2003) Treatment of early rheumatoid arthritis. Best Practice Res Clin Rheumatol 17: 791–809CrossRefGoogle Scholar
  82. 78.
    Dijkstra G, Moshage H, Jansen PL (2002) Blockade of NF-kappaB activation and donation of nitric oxide: new treatment options in inflammatory bowel disease? Scand J Gastroenterol (Suppl) 236: 37–41CrossRefGoogle Scholar
  83. 79.
    Ward C, Dransfield I Chilvers ER, Haslett C, Rossi AG (1999) Pharmacological manipulation of granulocyte apoptosis: potential therapeutic targets. Trends Pharmacol Sci 20: 503–9CrossRefPubMedGoogle Scholar
  84. 80.
    Chilvers ER, Rossi AG, Murray J, Haslett C (1998) Regulation of granulocyte apoptosis and implication for anti-inflammatory therapy. Thorax 53: 533–4PubMedGoogle Scholar
  85. 81.
    Athens JW, Mauer AM, Aschenbrucker H, Cartwright GE, Wintrobe MM (1961) Leukokinetic studies III: The distribution of granulocyte in the blood of normal subjects. J Clin Invest 40: 159–61PubMedGoogle Scholar
  86. 82.
    Athens JW, Raab OP, Raab SO, Mauer AM, Aschenbrucker H, Cartwright GE, Wintrobe MM (1961) Leukokinetic studies IV: The total blood, circulating and marginal granulocyte pools and the granulocyte turnover rate in normal subjects. J Clin Invest 40:989–97PubMedGoogle Scholar
  87. 83.
    Savill J (1992) Macrophage recognition of senescent neutrophils. Clin Sci 83: 649–55PubMedGoogle Scholar
  88. 84.
    Aoshiba K, Nafai A, Konno K (1995) Erythromycin shortens neutrophil survival by accelerating apoptosis. Antimicrob Agents Chemother 39: 872–7PubMedGoogle Scholar
  89. 85.
    Adachi T, Motojima S, Hirata A, Fukuda T, Kihara N, Kosaku A, Ohtake H, Makino S (1996) Eosinophil apoptosis caused by theophylline, glucocorticoids, and macrolides after stimulation with IL-5. J Allergy Clin Immunol 98: S207–S215PubMedGoogle Scholar
  90. 86.
    Inamura K, Ohta N, Fukase S, Kasajima N, Aoyagi M (2000) The effect of erythromycin on human peripheral neutrophil apoptosis. Rhinology 38: 124–9PubMedGoogle Scholar
  91. 87.
    Koch CC, Esteban DJ, Chin AC, Olson ME, Read RR, Ceri H, Morck DW, Buret AG (2000) Apoptosis, oxidative metabolism and interleukin-8 production on human neutrophils exposed to azithromycin: effects of Streptococcus pneumoniae. J Antimicrob Chemother 46: 19–26CrossRefPubMedGoogle Scholar
  92. 88.
    Healy DP, Silverman P, Neely AN, Holder I.A, Babcock GF (2002) Effects of antibiotics on human polymorphonuclear neutrophil apoptosis. Pharmacotherapy 22: 578–85CrossRefPubMedGoogle Scholar
  93. 89.
    Chin AC, Lee WD, Murrin KA, Morck DW, Merrill JK, Dick P, Buret AG (2000) Tilmicosin induces apoptosis in bovine peripheral neutrophils in the presence or in absence of Pasteurella hemolytica and promotes neutrophil phagocytosis by macrophages. Antimicrob Agents Chemother 44: 2465–70Google Scholar
  94. 90.
    Grdiša M, Lopatar N, Pavelić K (1998) Effects of a 17-membered azalide on tumor cell growth. Chemotherapy 44: 331–6PubMedGoogle Scholar
  95. 91.
    Lawrence T, Gilroy DW, Colville-Nash PR, Willoughby DA (2001) Possible new role for NFκB in the resolution of inflammation. Nature Med 7: 1291–7CrossRefPubMedGoogle Scholar
  96. 92.
    Yamaryo T, Oishi K, Yoshimine H, Tsuchihashi Y, Matsushima K, Nagatake T (2003) Fourteen-member macrolides promote the phosphatidylserine receptor-dependent phagocytosis of apoptic neutrophils by alveolar macrophages. Antimicrob Agents Chemother 47: 48–53Google Scholar
  97. 93.
    Yerramasetti R, Gollapudi S, Gupta S (2002) Rifampicin inhibits CD95-mediated apoptosis of Jurkat T cells via glucocorticoid receptors by modifying the expression of molecules regulating apoptosis. J Clin Immunol 22: 37–47CrossRefPubMedGoogle Scholar
  98. 94.
    Gollapudi S, Jaidka S, Gupta S (2003) Molecular basis of rifampicin-induced inhibition of anti CD95-induced apoptosis of peripheral blood T lymphocytes: the role of CD95 ligand and FLIPs. J Clin Immunol 23: 11–22CrossRefPubMedGoogle Scholar
  99. 95.
    Azuma Y, Ohura K (2003) Alteration of constitutive apoptosis in neutrophils by quinolones. Inflammation 27: 115–22CrossRefPubMedGoogle Scholar
  100. 96.
    Eichenfeld AH (1999) Minocycline and autoimmunity. Curr Opin Pediatr 11: 447–56CrossRefPubMedGoogle Scholar

Copyright information

© Birkhäuser Verlag Basel/Switzerland 2005

Authors and Affiliations

  • Michael J. Parnham
    • 1
  1. 1.PLIVA Research Institute LtdZagrebCroatia

Personalised recommendations