Advertisement

Macrolides in cystic fibrosis

  • Adam Jaffé
  • Andrew Bush
Chapter
Part of the Progress in Inflammation Research book series (PIR)

Keywords

Cystic Fibrosis Force Vital Capacity Cystic Fibrosis Patient Respir Crit Human Bronchial Epithelial Cell 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Smith JJ, Travis SM, Greenberg EP, Welsh MJ (1996) Cystic fibrosis airway epithelia fail to kill bacteria because of abnormal airway surface fluid. Cell 85: 229–36CrossRefPubMedGoogle Scholar
  2. 2.
    Goldman MJ, Anderson GM, Stolzenberg ED, Kari UP, Zasloff M, Wilson JM (1997) Human â-Defensin-1 is a salt-sensitive antibiotic in lung that is inactivated in cystic fibrosis. Cell 88: 553–60CrossRefPubMedGoogle Scholar
  3. 3.
    Dauletbaev N, Gropp R, Frye M, Loitsch S, Wagner TO, Bargon J (2002) Expression of human beta defensin (HBD-1 and HBD-2) mRNA in nasal epithelia of adult cystic fibrosis patients, healthy individuals, and individuals with acute cold. Respiration 69: 46–51CrossRefPubMedGoogle Scholar
  4. 4.
    Ashitani J, Mukae H, Nakazato M, Ihi T, Mashimoto H, Kadota J, Kohno S, Matsukura S (1998) Elevated concentrations of defensins in bronchoalveolar lavage fluid in diffuse panbronchiolitis. Eur Respir J 11: 104–11CrossRefPubMedGoogle Scholar
  5. 5.
    Hiratsuka T, Mukae H, Iiboshi H, Ashitani J, Nabeshima K, Minematsu T, Chino N, Ihi T, Kohno S, Nakazato M (2003) Increased concentrations of human â-defensins in plasma and bronchoalveolar lavage fluid of patients with diffuse panbronchiolitis. Thorax 58: 425–30CrossRefPubMedGoogle Scholar
  6. 6.
    Armstrong DS, Grimwood K, Carzino R, Carlin JB, Olinsky A, Phelan PD (1995) Lower respiratory infection and inflammation in infants with newly diagnosed cystic fibrosis. BMJ 310: 1571–2PubMedGoogle Scholar
  7. 7.
    Khan TZ, Wagener JS, Bost T, Martinez J, Accurso FJ, Riches DW (1995) Early pulmonary inflammation in infants with cystic fibrosis. Am J Respir Crit Care Med 151: 1075–82PubMedGoogle Scholar
  8. 8.
    Zahm JM, Gaillard D, Dupuit F, Hinnrasky J, Porteous D, Dorin JR, Puchelle E (1997) Early alterations in airway mucociliary clearance and inflammation of the lamina propria in CF mice. Am J Physiol 272: C853–C859PubMedGoogle Scholar
  9. 9.
    Tirouvanziam R, de Bentzmann S, Hubeau C, Hinnrasky J, Jacquot J, Peault B, Puchelle E (2000) Inflammation and infection in naive human cystic fibrosis airway grafts. Am J Respir Cell Mol Biol 23: 121–7PubMedGoogle Scholar
  10. 10.
    Pahl HL, Sester M, Burgert HG, Baeuerle PA (1996) Activation of transcription factor NF-kappaB by the adenovirus E3/19K protein requires its ER retention. J Cell Biol 132:511–22CrossRefPubMedGoogle Scholar
  11. 11.
    DiMango E, Ratner AJ, Bryan R, Tabibi S, Prince A (1998) Activation of NF-kappaB by adherent Pseudomonas aeruginosa in normal and cystic fibrosis respiratory epithelial cells. J Clin Invest 101: 2598–605PubMedGoogle Scholar
  12. 12.
    Weber AJ, Soong G, Bryan R, Saba S, Prince A (2001) Activation of NF-kappaB in airway epithelial cells is dependent on CFTR trafficking and Cl-channel function. Am J Physiol Lung Cell Mol Physiol 281: L71–L78PubMedGoogle Scholar
  13. 13.
    Miele L, Cordella Miele E, Xing M, Frizzell R, Mukherjee AB (1997) Cystic fibrosis gene mutation (deltaF508) is associated with an intrinsic abnormality in Ca2+-induced arachidonic acid release by epithelial cells. DNA Cell Biol 16: 749–59PubMedGoogle Scholar
  14. 14.
    Tabary O, Escotte S, Couetil JP, Hubert D, Dusser D, Puchelle E, Jacquot J (2001) Relationship between IkappaBalpha deficiency, NFkappaB activity and interleukin-8 production in CF human airway epithelial cells. Pflugers Arch 443(Suppl 1): S40–S44CrossRefPubMedGoogle Scholar
  15. 15.
    Corvol H, Fitting C, Chadelat K, Jacquot J, Tabary O, Boule M, Cavaillon JM, Clement A (2003) Distinct cytokine production by lung and blood neutrophils from children with cystic fibrosis. Am J Physiol Lung Cell Mol Physiol 284: L997–1003PubMedGoogle Scholar
  16. 16.
    Eidelman O, Srivastava M, Zhang J, Leighton X, Murtie J, Jozwik C, Jacobson K, Weinstein DL, Metcalf EL, Pollard HB (2001) Control of the proinflammatory state in cystic fibrosis lung epithelial cells by genes from the TNF-alphaR/NFkappaB pathway. Mol Med 7: 523–34PubMedGoogle Scholar
  17. 17.
    Venkatakrishnan A, Stecenko AA, King G, Blackwell TR, Brigham KL, Christman JW, Blackwell TS (2000) Exaggerated activation of nuclear factor-kappaB and altered IkappaB-beta processing in cystic fibrosis bronchial epithelial cells. Am J Respir Cell Mol Biol 23: 396–403PubMedGoogle Scholar
  18. 18.
    Aldallal N, McNaughton EE, Manzel LJ, Richards AM, Zabner J, Ferkol TW, Look DC (2002) Inflammatory response in airway epithelial cells isolated from patients with cystic fibrosis. Am J Respir Crit Care Med 166: 1248–56CrossRefPubMedGoogle Scholar
  19. 19.
    Pizurki L, Morris MA, Chanson M, Solomon M, Pavirani A, Bouchardy I, Suter S (2000) Cystic fibrosis transmembrane conductance regulator does not affect neutrophil migration across cystic fibrosis airway epithelial monolayers. Am J Pathol 156: 1407–16PubMedGoogle Scholar
  20. 20.
    Davis PB, Drumm M, Konstan MW (1996) Cystic fibrosis. Am J Respir Crit Care Med 154: 1229–56PubMedGoogle Scholar
  21. 21.
    Henke MO, Renner A, Huber RM, Seeds MC, Rubin BK (2004) MUC5AC and MUC5B mucins are decreased in cystic fibrosis airway secretions. Am J Respir Cell Mol Biol 31:86–91CrossRefPubMedGoogle Scholar
  22. 22.
    Davies J, Dewar A, Bush A, Pitt T, Gruenert D, Geddes DM, Alton EW (1999) Reduction in the adherence of Pseudomonas aeruginosa to native cystic fibrosis epithelium with anti-asialoGM1 antibody and neuraminidase inhibition. Eur Respir J 13: 565–70CrossRefPubMedGoogle Scholar
  23. 23.
    Li J, Johnson XD, Iazvovskaia S, Tan A, Lin A, Hershenson MB (2003) Signaling intermediates required for NF-kappa B activation and IL-8 expression in CF bronchial epithelial cells. Am J Physiol Lung Cell Mol Physiol 284: L307–L315PubMedGoogle Scholar
  24. 24.
    Pier GB, Grout M, Zaidi TS, Olsen JC, Johnson LG, Yankaskas JR, Goldberg JB (1996) Role of mutant CFTR in hyper susceptibility of cystic fibrosis patients to lung infections. Science 271: 64–7PubMedGoogle Scholar
  25. 25.
    Poschet JF, Boucher JC, Tatterson L, Skidmore J, Van Dyke RW, Deretic V (2001) Molecular basis for defective glycosylation and Pseudomonas pathogenesis in cystic fibrosis lung. Proc Natl Acad Sci USA 98: 13972–7CrossRefPubMedGoogle Scholar
  26. 26.
    Imundo L, Barasch J, Prince A, Al Awqati Q (1995) Cystic fibrosis epithelial cells have a receptor for pathogenic bacteria on their apical surface. Proc Natl Acad Sci USA 92:3019–23PubMedGoogle Scholar
  27. 27.
    Saiman L, Prince A (1993) Pseudomonas aeruginosa pili bind to asialoGM1 which is increased on the surface of cystic fibrosis epithelial cells. J Clin Invest 92: 1875–80PubMedGoogle Scholar
  28. 28.
    Davies JC, Stern M, Dewar A, Caplen NJ, Munkonge FM, Pitt T, Sorgi F, Huang L, Bush A, Geddes DM et al (1997) CFTR gene transfer reduces the binding of Pseudomonas aeruginosa to cystic fibrosis respiratory epithelium. Am J Respir Cell Mol Biol 16:657–63PubMedGoogle Scholar
  29. 29.
    Worlitzsch D, Tarran R, Ulrich M, Schwab U, Cekici A, Meyer KC, Birrer P, Bellon G, Berger J, Weiss T et al (2002) Effects of reduced mucus oxygen concentration in airway Pseudomonas infections of cystic fibrosis patients. J Clin Invest 109: 317–25CrossRefPubMedGoogle Scholar
  30. 30.
    Sakito O, Kadota J, Kohno S, Abe K, Shirai R, Hara K (1996) Interleukin 1 beta, tumor necrosis factor alpha, and interleukin 8 in bronchoalveolar lavage fluid of patients with diffuse panbronchiolitis: a potential mechanism of macrolide therapy. Respiration 63:42–8PubMedGoogle Scholar
  31. 31.
    Khair OA, Devalia JL, Abdelaziz MM, Sapsford RJ, Davies RJ (1995) Effect of erythromycin on Haemophilus influenzae endotoxin-induced release of IL-6, IL-8 and sICAM-1 by cultured human bronchial epithelial cells. Eur Respir J 8: 1451–7PubMedGoogle Scholar
  32. 32.
    Kawasaki S, Takizawa H, Ohtoshi T, Takeuchi N, Kohyama T, Nakamura H, Kasama T, Kobayashi K, Nakahara K, Morita Y et al (1998) Roxithromycin inhibits cytokine production by and neutrophil attachment to human bronchial epithelial cells in vitro. Antimicrob Agents Chemother 42: 1499–502PubMedGoogle Scholar
  33. 33.
    Mukae H, Kadota J, Ashitani J, Taniguchi H, Mashimoto H, Kohno S, Matsukura S (1997) Elevated levels of soluble adhesion molecules in serum of patients with diffuse panbronchiolitis. Chest 112: 1615–21PubMedGoogle Scholar
  34. 34.
    Takizawa H, Desaki M, Ohtoshi T, Kawasaki S, Kohyama T, Sato M, Tanaka M, Kasama T, Kobayashi K, Nakajima J et al (1997) Erythromycin modulates IL-8 expression in normal and inflamed human bronchial epithelial cells. Am J Respir Crit Care Med 156: 266–71PubMedGoogle Scholar
  35. 35.
    Yamanaka Y, Tamari M, Nakahata T, Nakamura Y (2001) Gene expression profiles of human small airway epithelial cells treated with low doses of 14-and 16-membered macrolides. Biochem Biophys Res Commun 287: 198–203CrossRefPubMedGoogle Scholar
  36. 36.
    Iino Y, Toriyama M, Kudo K, Natori Y, Yuo A (1992) Erythromycin inhibition of lipopolysaccharide-stimulated tumor necrosis factor alpha production by human monocytes in vitro. Ann Otol Rhinol Laryngol (Suppl) 157: 16–20Google Scholar
  37. 37.
    Schultz MJ, Speelman P, Zaat S, van Deventer SJ, van der Poll T (1998) Erythromycin inhibits tumor necrosis factor alpha and interleukin 6 production induced by heat-killed Streptococcus pneumoniae in whole blood. Antimicrob Agents Chemother 42: 1605–9PubMedGoogle Scholar
  38. 38.
    Everard ML, Sly P, Brenan S, Ryan G (1997) Macrolide antibiotics in diffuse panbronchiolitis and in cystic fibrosis [letter]. Eur Respir J 10: 2926CrossRefPubMedGoogle Scholar
  39. 39.
    Wallwork B, Coman W, Feron F, Mackay-Sim A, Cervin A (2002) Clarithromycin and prednisolone inhibit cytokine production in chronic rhinosinusitis. Laryngoscope 112:1827–30CrossRefPubMedGoogle Scholar
  40. 40.
    Abe S, Nakamura H, Inoue S, Takeda H, Saito H, Kato S, Mukaida N, Matsushima K, Tomoike H (2000) Interleukin-8 gene repression by clarithromycin is mediated by the activator protein-1 binding site in human bronchial epithelial cells. Am J Respir Cell Mol Biol 22: 51–60PubMedGoogle Scholar
  41. 41.
    Kikuchi T, Hagiwara K, Honda Y, Gomi K, Kobayashi T, Takahashi H, Tokue Y, Watanabe A, Nukiwa T (2002) Clarithromycin suppresses lipopolysaccharide-induced interleukin-8 production by human monocytes through AP-1 and NF-kappa B transcription factors. J Antimicrob Chemother 49: 745–55CrossRefPubMedGoogle Scholar
  42. 42.
    Desaki M, Takizawa H, Ohtoshi T, Kasama T, Kobayashi K, Sunazuka T, Omura S, Yamamoto K, Ito K (2000) Erythromycin suppresses nuclear factor-kappaB and activator protein-1 activation in human bronchial epithelial cells. Biochem Biophys Res Commun 267: 124–8CrossRefPubMedGoogle Scholar
  43. 43.
    Escotte S, Tabary O, Dusser D, Majer-Teboul C, Puchelle E, Jacquot J (2003) Fluticasone reduces IL-6 and IL-8 production of cystic fibrosis bronchial epithelial cells via IKKbeta kinase pathway. Eur Respir J 21: 574–81PubMedGoogle Scholar
  44. 44.
    Tosi MF, Stark JM, Smith CW, Hamedani A, Gruenert DC, Infeld MD (1992) Induction of ICAM-1 expression on human airway epithelial cells by inflammatory cytokines: effects on neutrophil-epithelial cell adhesion. Am J Respir Cell Mol Biol 7: 214–21PubMedGoogle Scholar
  45. 45.
    Hubeau C, Lorenzato M, Couetil JP, Hubert D, Dusser D, Puchelle E, Gaillard D (2001) Quantitative analysis of inflammatory cells infiltrating the cystic fibrosis airway mucosa. Clin Exp Immunol 124: 69–76CrossRefPubMedGoogle Scholar
  46. 46.
    De Rose V, Oliva A, Messore B, Grosso B, Mollar C, Pozzi E (1998) Circulating adhesion molecules in cystic fibrosis. Am J Respir Crit Care Med 157: 1234–9PubMedGoogle Scholar
  47. 47.
    Lin HC, Wang CH, Liu CY, Yu CT, Kuo HP (2000) Erythromycin inhibits beta2-integrins (CD11b/CD18) expression, interleukin-8 release and intracellular oxidative metabolism in neutrophils. Respir Med 94: 654–60CrossRefPubMedGoogle Scholar
  48. 48.
    Okubo Y (1997) Macrolides reduce the expression of surface Mac-1 molecule on neutrophil. Kurume Med J 44: 115–23PubMedGoogle Scholar
  49. 49.
    Li Y, Azuma A, Takahashi S, Usuki J, Matsuda K, Aoyama A, Kudoh S (2002) Fourteen-membered ring macrolides inhibit vascular cell adhesion molecule 1 messenger RNA induction and leukocyte migration: role in preventing lung injury and fibrosis in bleomycin-challenged mice. Chest 122: 2137–45CrossRefPubMedGoogle Scholar
  50. 50.
    Brennan S, Cooper D, Sly PD (2001) Directed neutrophil migration to IL-8 is increased in cystic fibrosis: a study of the effect of erythromycin. Thorax 56: 62–4CrossRefPubMedGoogle Scholar
  51. 51.
    Labro MT, el Benna J, Babin-Chevaye C (1989) Comparison of the in vitro effect of several macrolides on the oxidative burst of human neutrophils. J Antimicrob Chemother 24: 561–72PubMedGoogle Scholar
  52. 52.
    Anderson R (1989) Erythromycin and roxithromycin potentiate human neutrophil locomotion in vitro by inhibition of leukoattractant-activated superoxide generation and autooxidation. J Infect Dis 159: 966–73PubMedGoogle Scholar
  53. 53.
    Villagrasa V, Berto L, Cortijo J, Perpina M, Sanz C, Morcillo EJ (1997) Effects of erythromycin on chemoattractant-activated human polymorphonuclear leukocytes. Gen Pharmacol 29: 605–9CrossRefPubMedGoogle Scholar
  54. 54.
    Hand WL, Hand DL, King-Thompson NL (1990) Antibiotic inhibition of the respiratory burst response in human polymorphonuclear leukocytes. Antimicrob Agents Chemother 34: 863–70PubMedGoogle Scholar
  55. 55.
    Wenisch C, Parschalk B, Zedtwitz-Liebenstein K, Weihs A, el Menyawi I, Graninger I, (1996) Effect of single oral dose of azithromycin, clarithromycin, and roxithromycin on polymorphonuclear leukocyte function assessed ex vivo by flow cytometry. Antimicrob Agents Chemother 40: 2039–42PubMedGoogle Scholar
  56. 56.
    Culic O, Erakovic V, Cepelak I, Barisic K, Brajsa K, Ferencic Z, Galovic R, Glojnaric I, Manojlovic Z, Munic V et al (2002) Azithromycin modulates neutrophil function and circulating inflammatory mediators in healthy human subjects. Eur J Pharmacol 450:277–89CrossRefPubMedGoogle Scholar
  57. 57.
    Aoshiba K, Nagai A, Konno K (1995) Erythromycin shortens neutrophil survival by accelerating apoptosis. Antimicrob Agents Chemother 39: 872–7PubMedGoogle Scholar
  58. 58.
    Nagai H, Shishido H, Yoneda R, Yamaguchi E, Tamura A, Kurashima A (1991) Long-term low-dose administration of erythromycin to patients with diffuse panbronchiolitis. Respiration 58: 145–9PubMedGoogle Scholar
  59. 59.
    Dupont MJ, Lapointe JR (1995) Effect on Pseudomonas aeruginosa alginate expression of direct plating and culture of fresh cystic fibrosis sputum on to pseudomonas isolation agar containing subinhibitory concentrations of roxithromycin and rifampicin. J Antimicrob Chemother 36: 231–6PubMedGoogle Scholar
  60. 60.
    Baumann U, Fischer JJ, Gudowius P, Lingner M, Herrmann S, Tummler B, von der HH (2001) Buccal adherence of Pseudomonas aeruginosa in patients with cystic fibrosis under long-term therapy with azithromycin. Infection 29: 7–11CrossRefPubMedGoogle Scholar
  61. 61.
    Nakashio S, Susa C, Qiu S, Kijima A, Iwasawa H, Shimomura H, Kanemitsu K, Hori S, Mizushima Y, Shimada J (1993) Antimicrobial activity of clarithromycin and its effect on bacterial adherence to medical material. Jpn J Antibiot 46: 428–36PubMedGoogle Scholar
  62. 62.
    Yamasaki T (1990) Adherence of Pseudomonas aeruginosa to mouse tracheal epithelium — the effect of antimicrobial agents. J Jpn Assoc Infect Dis 64: 575–83Google Scholar
  63. 63.
    Tsang KW, Ng P, Ho PL, Chan S, Tipoe G, Leung R, Sun J, Ho JC, Ip MS, Lam WK (2003) Effects of erythromycin on Pseudomonas aeruginosa adherence to collagen and morphology in vitro. Eur Respir J 21: 401–6PubMedGoogle Scholar
  64. 64.
    Tsang KW, Shum DK, Chan S, Ng P, Mak J, Leung R, Shum IH, Ooi GC, Tipoe GL, Lam WK (2003) Pseudomonas aeruginosa adherence to human basement membrane collagen in vitro. Eur Respir J 21: 932–8PubMedGoogle Scholar
  65. 65.
    Kobayashi O, Moser C, Jensen PO, Hoiby N (2000) Azithromycin treatment inhibits induction of mucoid phenotype in susceptible BALB/c mice with chronic Pseudomonas aeruginosa lung infection. Proceedings of XIIIth International Cystic Fibrosis Congress, Stockholm, Sweden 164Google Scholar
  66. 66.
    Kobayashi H (1995) Biofilm disease: its clinical manifestation and therapeutic possibilities of macrolides. Am J Med 99: 26S–30SCrossRefPubMedGoogle Scholar
  67. 67.
    Hoiby N, Koch C (1990) Pseudomonas aeruginosa infection in cystic fibrosis and its management. Thorax 45: 881–4PubMedGoogle Scholar
  68. 68.
    Ichimiya T, Takeoka K, Hiramatsu K, Hirai K, Yamasaki T, Nasu M (1996) The influence of azithromycin on the biofilm formation of Pseudomonas aeruginosa in vitro. Chemotherapy 42: 186–91PubMedGoogle Scholar
  69. 69.
    Goswami SK, Kivity S, Marom Z (1990) Erythromycin inhibits respiratory glycoconjugate secretion from human airways in vitro. Am Rev Respir Dis 141: 72–8PubMedGoogle Scholar
  70. 70.
    Tamaoki J, Nakata J, Takeda Y, Takemura H, Tagaya E, Konno K (1996) Effect of macrolide antibiotics on airway goblet hypersecretion in guinea pigs. Kansenshogaku Zasshi 70: 591–6PubMedGoogle Scholar
  71. 71.
    Shimizu T, Shimizu S, Hattori R, Gabazza EC, Majima Y (2003) In vivo and in vitro effects of macrolide antibiotics on mucus secretion in airway epithelial cells. Am J Respir Crit Care Med 168: 581–7CrossRefPubMedGoogle Scholar
  72. 72.
    Dupont MJ, Lapointe JR (1990) Quantitative effect of roxithromycin and rifampicin on mucoid cultures from directly plated sputum of cystic fibrosis patients chronically colonized with Pseudomonas aeruginosa. Drugs Exp Clin Res 16: 597–605PubMedGoogle Scholar
  73. 73.
    Shibuya Y, Wills PJ, Cole PJ (2001) The effect of erythromycin on mucociliary transportability and rheology of cystic fibrosis and bronchiectasis sputum. Respiration 68: 615–19CrossRefPubMedGoogle Scholar
  74. 74.
    Tai S, Sudo E, Sun F, King M, Sextro W, von der Hardt H, Baumann U (1999) Effect of azithromycin treatment on sputum rheology in cystic fibrosis patients. Pediatr Pulmonol (Suppl) 19: 265Google Scholar
  75. 75.
    App EM, Konig K, Duffner U, Baumann U, King M, von der Hardt H (2000) The effects of azithromycin therapy on sputum inflammation in CF lung disease. Am J Respir Crit Care Med(Suppl) 161: A758Google Scholar
  76. 76.
    Kaneko Y, Yanagihara K, Seki M, Kuroki M, Miyazaki Y, Hirakata Y, Mukae H, Tomono K, Kadota J, Kohno S (2003) Clarithromycin inhibits overproduction of muc5ac core protein in murine model of diffuse panbronchiolitis. Am J Physiol Lung Cell Mol Physiol 285: L847–L853PubMedGoogle Scholar
  77. 77.
    Tateda K, Ishii Y, Matsumoto T, Furuya N, Nagashima M, Matsunaga T, Ohno A, Miyazaki S, Yamaguchi K (1996) Direct evidence for antipseudomonal activity of macrolides: exposure-dependent bactericidal activity and inhibition of protein synthesis by erythromycin, clarithromycin, and azithromycin. Antimicrob Agents Chemother 40:2271–5PubMedGoogle Scholar
  78. 78.
    Tateda K, Comte R, Pechere JC, Kohler T, Yamaguchi K, Van Delden C (2001) Azithromycin inhibits quorum sensing in Pseudomonas aeruginosa. Antimicrob Agents Chemother 45: 1930–3CrossRefPubMedGoogle Scholar
  79. 79.
    Altschuler EL (1998) Azithromycin, the multidrug-resistant protein, and cystic fibrosis [letter]. Lancet 351: 1286CrossRefGoogle Scholar
  80. 80.
    Lallemand JY, Stoven V, Annereau JP, Boucher J, Blanquet S, Barthe J, Lenoir G (1997) Induction by antitumoral drugs of proteins that functionally complement CFTR: a novel therapy for cystic fibrosis? [letter]. Lancet 350: 711–12CrossRefGoogle Scholar
  81. 81.
    Sermet-Gaudelus I, Kessler R, Stoven V, Annereau JP, Thuillier L, Bieth J, Bonnefond JP, Dommergues JP, VanDeVenne C, Weizenblum C et al (1998) Dramatic improvement of cystic fibrosis during and after antitumorous chemotherapy: a report of three cases. Pediatr Pulmonol (Suppl) 17: 219–20Google Scholar
  82. 82.
    Gant TW, O’Connor CK, Corbitt R, Thorgeirsson U, Thorgeirsson SS (1995) In vivo induction of liver P-glycoprotein expression by xenobiotics in monkeys. Toxicol Appl Pharmacol 133: 269–76CrossRefPubMedGoogle Scholar
  83. 83.
    Tamaoki J, Isono K, Sakai N, Kanemura T, Konno K (1992) Erythromycin inhibits Cl secretion across canine tracheal epithelial cells. Eur Respir J 5: 234–8PubMedGoogle Scholar
  84. 84.
    Tagaya E, Tamaoki J, Kondo M, Nagai A (2002) Effect of a short course of clarithromycin therapy on sputum production in patients with chronic airway hypersecretion. Chest 122: 213–18CrossRefPubMedGoogle Scholar
  85. 85.
    Advenier C, Sarria B, Naline E, Puybasset L, Lagente V (1990) Contractile activity of three endothelins (ET-1, ET-2 and ET-3) on the human isolated bronchus. Br J Pharmacol 100: 168–72PubMedGoogle Scholar
  86. 86.
    Blouquit S, Sari A, Lombet A, D’herbomez M, Naline E, Matran R, Chinet T (2003) Effects of endothelin-1 on epithelial ion transport in human airways. Am J Respir Cell Mol Biol 29: 245–51CrossRefPubMedGoogle Scholar
  87. 87.
    Pradal U, Delmarco A, Cipolli M, Cazzola G (2001) Chloride transport may be restored by long-term azithromycin treatment in patients with cystic fibrosis. Pediatr Pulmonol (Suppl) 20: 280–1Google Scholar
  88. 88.
    Gillie DJ, Barker PM (2001) Effect of clarithromycin on in vivo ion transport by CFTR-/-mouse nasal epithelium. Pediatr Pulmonol (Suppl) 22: 259Google Scholar
  89. 89.
    Equi A, Davies JC, Geddes DM, Bush A, Hyde SC, Alton EWFW (2002) Effect of azithromycin on in vivo ion transport in cystic fibrosis patients. Am J Respir Crit Care Med (Suppl) 165: B37Google Scholar
  90. 90.
    App EM, Konig A, Lam R, Duszyk M, King M, Duffner K (2001) Macrolides stimulate transepithelial anion secretion in epithelial cells. Pediatr Pulmonol (Suppl) 22: 204–5Google Scholar
  91. 91.
    Middleton PG, Geddes DM, Alton EW (1996) Trimethoprim and tetracycline inhibit airway epithelial sodium absorption. Am J of Respir Crit Care Med 154: 18–23Google Scholar
  92. 92.
    Meng QH, Springall DR, Bishop AE, Morgan K, Evans TJ, Habib S, Gruenert DC, Gyi KM, Hodson ME, Yacoub MH et al (1998) Lack of inducible nitric oxide synthase in bronchial epithelium: a possible mechanism of susceptibility to infection in cystic fibrosis. J Pathol 184: 323–31CrossRefPubMedGoogle Scholar
  93. 93.
    Gaston B, Ratjen F, Vaughan JW, Malhotra NR, Canady RG, Snyder AH, Hunt JF, Gaertig S, Goldberg JB (2002) Nitrogen redox balance in the cystic fibrosis airway: effects of antipseudomonal therapy. Am J Respir Crit Care Med 165: 387–90CrossRefPubMedGoogle Scholar
  94. 94.
    Mitsuyama T, Hidaka K, Furuno T, Hara N (1997) Neutrophil-induced endothelial cell damage: inhibition by a 14-membered ring macrolide through the action of nitric oxide. Int Arch Allergy Immunol 114: 111–15PubMedGoogle Scholar
  95. 95.
    Tamaoki J, Kondo M, Kohri K, Aoshiba K, Tagaya E, Nagai A (1999) Macrolide antibiotics protect against immune complex-induced lung injury in rats: role of nitric oxide from alveolar macrophages. J Immunol 163: 2909–15PubMedGoogle Scholar
  96. 96.
    Culic O, Erakovic V, Parnham MJ (2001) Anti-inflammatory effects of macrolide antibiotics. Eur J Pharmacol 429: 209–29CrossRefPubMedGoogle Scholar
  97. 97.
    Takizawa H, Desaki M, Ohtoshi T, Kawasaki S, Kohyama T, Sato M, Nakajima J, Yanagisawa M, Ito K (1998) Erythromycin and clarithromycin attenuate cytokineinduced endothelin-1 expression in human bronchial epithelial cells. Eur Respir J 12: 57–63CrossRefPubMedGoogle Scholar
  98. 98.
    Saiman L, Marshall BC, Mayer-Hamblett N, Burns JL, Quittner AL, Cibene DA, Coquillette S, Fieberg AY, Accurso FJ, Campbell PW III (2003) Azithromycin in patients with cystic fibrosis chronically infected with Pseudomonas aeruginosa: a randomized controlled trial. JAMA 290: 1749–56CrossRefPubMedGoogle Scholar
  99. 99.
    Yatsunami J, Fukuno Y, Nagata M, Tominaga M, Aoki S, Tsuruta N, Kawashima M, Taniguchi S, Hayashi S (1999) Antiangiogenic and antitumor effects of 14-membered ring macrolides on mouse B16 melanoma cells. Clin Exp Metastasis 17: 361–7PubMedGoogle Scholar
  100. 100.
    Yatsunami J, Tsuruta N, Hara N, Hayashi S (1998) Inhibition of tumor angiogenesis by roxithromycin, a 14-membered ring macrolide antibiotic. Cancer Lett 131: 137–43CrossRefPubMedGoogle Scholar
  101. 101.
    Fujitani Y, Trifilieff A (2003) In vivo and in vitro effects of SAR 943, a rapamycin analogue, on airway inflammation and remodeling. Am J Respir Crit Care Med 167: 193–8CrossRefPubMedGoogle Scholar
  102. 102.
    Hilliard TN, Madden N, Nicholson AG, Alton EWFW, Davies JC, Bush A (2003) Airway inflammation and remodelling in children with cystic fibrosis. Thorax 58(Suppl III): iii64Google Scholar
  103. 103.
    Feldman C, Anderson R, Theron AJ, Ramafi G, Cole PJ, Wilson R (1997) Roxithromycin, clarithromycin, and azithromycin attenuate the injurious effects of bioactive phospholipids on human respiratory epithelium in vitro. Inflammation 21: 655–65CrossRefPubMedGoogle Scholar
  104. 104.
    Feldman C, Anderson R, Theron A, Mokgobu I, Cole PJ, Wilson R (1999) The effects of ketolides on bioactive phospholipid-induced injury to human respiratory epithelium in vitro. Eur Respir J 13: 1022–8CrossRefPubMedGoogle Scholar
  105. 105.
    Equi A, Balfour-Lynn I, Bush A, Rosenthal M (2002). Long term azithromycin in children with cystic fibrosis: a randomised, placebo-controlled crossover trial. Lancet 360:978–84CrossRefPubMedGoogle Scholar
  106. 106.
    Jaffe A, Bush A (2001) Anti-inflammatory effects of macrolides in lung disease. Pediatr 31: 464–73CrossRefPubMedGoogle Scholar
  107. 107.
    Jaffe A, Francis J, Rosenthal M, Bush A (1998) Long-term azithromycin may improve lung function in children with cystic fibrosis. Lancet 351: 420CrossRefPubMedGoogle Scholar
  108. 108.
    Anstead MI, Kuhn RJ, Hartford LH, Craigmyle L, Halsey S, Kanga JF (1999) Effect of chronic azithromycin on lung function in cystic fibrosis. Pediatr Pulmonol (Suppl) 19: 283Google Scholar
  109. 109.
    Hallberg K, Gronowitz E, Strandvik B (2000) Azithromycin improves pulmonary symptoms in patients with CF. Proceedings of XIIIth International Cystic Fibrosis Congress, Stockholm, Sweden 165Google Scholar
  110. 110.
    Hampton E, Lindsay F, Pagan J, Singleton P (2000) An observational report of the use of azithromycin in cystic fibrosis. Proceedings of XIIIth International Cystic Fibrosis Congress, Stockholm, Sweden 165Google Scholar
  111. 111.
    Ordonez CL, Stulbarg M, Grundland H, Liu JT, Boushey HA (2001) Effect of clarithromycin on airway obstruction and inflammatory markers in induced sputum in cystic fibrosis: A pilot study. Pediatr Pulmonol 32: 29–37CrossRefPubMedGoogle Scholar
  112. 112.
    Wolter J, Seeney S, Bell S, Bowler S, Masel P, McCormack J (2002) Effect of long term treatment with azithromycin on disease parameters in cystic fibrosis: a randomised trial. Thorax 57: 212–16CrossRefPubMedGoogle Scholar
  113. 113.
    Ripoll L, Reinert P, Pepin LF, Lagrange PH (1996) Interaction of macrolides with alpha dornase during DNA hydrolysis. J Antimicrob Chemother 37: 987–91PubMedGoogle Scholar
  114. 114.
    Pirzada OM, McGaw J, Taylor CJ, Everard ML (2003) Improved lung function and body mass index associated with long-term use of Macrolide antibiotics. J Cystic Fibrosis 2: 69–71CrossRefGoogle Scholar
  115. 115.
    Prunier AL, Malbruny B, Laurans M, Brouard J, Duhamel JF, Leclercq R (2003) High rate of macrolide resistance in Staphylococcus aureus strains from patients with cystic fibrosis reveals high proportions of hypermutable strains. J Infect Dis 187: 1709–16CrossRefPubMedGoogle Scholar

Copyright information

© Birkhäuser Verlag Basel/Switzerland 2005

Authors and Affiliations

  • Adam Jaffé
    • 1
  • Andrew Bush
    • 2
  1. 1.Portex Respiratory Medicine UnitGreat Ormond Street Hospital for Children NHS Trust & Institute of Child HealthLondonUK
  2. 2.Department of Paediatric Respiratory MedicineRoyal Brompton and Harefield NHS TrustLondonUK

Personalised recommendations