Effects of antibiotics on Pseudomonas aeruginosa virulence factors and quorum-sensing system

  • Kazuhiro Tateda
  • Theodore J. Standiford
  • Keizo Yamaguchi
Part of the Progress in Inflammation Research book series (PIR)


Cystic Fibrosis Pseudomonas Aeruginosa Virulence Factor Antimicrob Agent Macrolide Antibiotic 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Richards MJ, Edwards JR, Culver DH, Gaynes RP (1999) Nosocomial infections in medical intensive care units in the United States. National Nosocomial Infections Surveillance System. Crit Care Med 27(5): 887–92CrossRefPubMedGoogle Scholar
  2. 2.
    Hoiby N (1994) Diffuse panbronchiolitis and cystic fibrosis: East meets West. Thorax 49(6): 531–2PubMedGoogle Scholar
  3. 3.
    Wilson R, Dowling RB (1998) Lung infections. 3. Pseudomonas aeruginosa and other related species. Thorax 53(3): 213–19PubMedGoogle Scholar
  4. 4.
    Passador L, Cook JM, Gambello MJ, Rust L, Iglewski BH (1993) Expression of Pseudomonas aeruginosa virulence genes requires cell-to-cell communication. Science 260(5111): 1127–30PubMedGoogle Scholar
  5. 5.
    Kaplan HB, Greenberg EP (1985) Diffusion of autoinducer is involved in regulation of the Vibrio fischeri luminescence system. J Bacteriol 163(3): 1210–14PubMedGoogle Scholar
  6. 6.
    Pearson JP, Gray KM, Passador L, Tucker KD, Eberhard A, Iglewski BH, Greenberg EP (1994) Structure of the autoinducer required for expression of Pseudomonas aeruginosa virulence genes. Proc Natl Acad Sci USA 91(1): 197–201PubMedGoogle Scholar
  7. 7.
    Pearson JP, Passador L, Iglewski BH, Greenberg EP (1995) A second N-acylhomoserine lactone signal produced by Pseudomonas aeruginosa. Proc Natl Acad Sci USA 92(5):1490–4PubMedGoogle Scholar
  8. 8.
    Kudoh S, Kimura H (1984) Clinical effect of low-dose long-term administration of macrolides on diffuse panbronchiolits. Jpn J Thorac Dis 22: 254Google Scholar
  9. 9.
    Kudoh S, Uetake T, Hagiwara K, Hirayama M, Hus LH, Kimura H, Sugiyama Y (1987) Clinical effects of low-dose long-term erythromycin chemotherapy on diffuse panbronchiolitis. Jpn J Thorac Dis 25(6): 632–42Google Scholar
  10. 10.
    Peters DH, Friedel HA, McTavish D (1992) Azithromycin: A review of its antimicrobial activity, pharmacokinetic properties and clinical efficacy. Drugs 44(5): 750–99PubMedGoogle Scholar
  11. 11.
    Wilson JT, van Boxtel CJ (1978) Pharmacokinetics of erythromycin in man. Antibiot Chemother 25: 181–203PubMedGoogle Scholar
  12. 12.
    Kirst HA, Sides GD (1989) New directions for macrolide antibiotics: pharmacokinetics and clinical efficacy. Antimicrob Agents Chemother 33(9): 1419–22PubMedGoogle Scholar
  13. 13.
    Butts JD (1994) Intracellular concentrations of antibacterial agents and related clinical implications. Clin Pharmacokinet 27(1): 63–84PubMedGoogle Scholar
  14. 14.
    Tulkens PM (1991) Intracellular distribution and activity of antibiotics. Eur J Clin Microbiol Infect Dis 10(2): 100–106Google Scholar
  15. 15.
    Gladue RP, Bright GM, Isaacson RE, Newborg MF (1989) In vitro and in vivo uptake of azithromycin (CP-62,993) by phagocytic cells: possible mechanism of delivery and release at sites of infection. Antimicrob Agents Chemother 33(3): 277–82PubMedGoogle Scholar
  16. 16.
    Tateda K, Ishii Y, Matsumoto T, Furuya N, Nagashima M, Matsunaga T, Ohno A, Miyazaki S, Yamaguchi K (1996) Direct evidence for antipseudomonal activity of macrolides: exposure-dependent bactericidal activity and inhibition of protein synthesis by erythromycin, clarithromycin, and azithromycin. Antimicrob Agents Chemother 40(10): 2271–5PubMedGoogle Scholar
  17. 17.
    Pollack M (1984) The virulence of Pseudomonas aeruginosa. Rev Infect Dis 6(Suppl 3):S617–626PubMedGoogle Scholar
  18. 18.
    Molinari G, Paglia P, Schito GC (1992) Inhibition of motility of Pseudomonas aeruginosa and Proteus mirabilis by subinhibitory concentrations of azithromycin. Eur J Clin Microbiol Infect Dis 11(5): 469–71CrossRefPubMedGoogle Scholar
  19. 19.
    Molinari G, Guzman CA, Pesce A, Schito GC (1993) Inhibition of Pseudomonas aeruginosa virulence factors by subinhibitory concentrations of azithromycin and other macrolide antibiotics. J Antimicrob Chemother 31(5): 681–8PubMedGoogle Scholar
  20. 20.
    Sato K, Suga M, Nishimura J, Kushima Y, Muranaka H, Ando M (1997) Pyocyanine synthesis by Pseudomonas aeruginosa in chronic airway infection and the effect of erythromycin on its biological activity. Jpn J Antibiot 50(Suppl): 89–91PubMedGoogle Scholar
  21. 21.
    Kita E, Sawaki M, Oku D, Hamuro A, Mikasa K, Konishi M, Emoto M, Takeuchi S, Narita N, Kashiba S (1991) Suppression of virulence factors of Pseudomonas aeruginosa by erythromycin. J Antimicrob Chemother 27(3): 273–84PubMedGoogle Scholar
  22. 22.
    Sakata K, Yajima H, Tanaka K, Sakamoto Y, Yamamoto K, Yoshida A, Dohi Y (1993) Erythromycin inhibits the production of elastase by Pseudomonas aeruginosa without affecting its proliferation in vitro. Am Rev Respir Dis 148(4 Pt 1): 1061–5PubMedGoogle Scholar
  23. 23.
    Hirakata Y, Kaku M, Mizukane R, Ishida K, Furuya N, Matsumoto T, Tateda K, Yamaguchi K (1992) Potential effects of erythromycin on host defense systems and virulence of Pseudomonas aeruginosa. Antimicrob Agents Chemother 36(9): 1922–7PubMedGoogle Scholar
  24. 24.
    Mizukane R, Hirakata Y, Kaku M, Ishii Y, Furuya N, Ishida K, Koga H, Kohno S, Yamaguchi K (1994) Comparative in vitro exoenzyme-suppressing activities of azithromycin and other macrolide antibiotics against Pseudomonas aeruginosa. Antimicrob Agents Chemother 38(3): 528–33PubMedGoogle Scholar
  25. 25.
    Govan JR, Deretic V (1996) Microbial pathogenesis in cystic fibrosis: mucoid Pseudomonas aeruginosa and Burkholderia cepacia. Microbiol Rev 60(3): 539–74PubMedGoogle Scholar
  26. 26.
    Yasuda H, Ajiki Y, Koga T, Kawada H, Yokota T (1993) Interaction between biofilms formed by Pseudomonas aeruginosa and clarithromycin. Antimicrob Agents Chemother 37(9): 1749–55PubMedGoogle Scholar
  27. 27.
    Ichimiya T, Yamasaki T, Nasu M (1994) In-vitro effects of antimicrobial agents on Pseudomonas aeruginosa biofilm formation. J Antimicrob Chemother 34(3): 331–41PubMedGoogle Scholar
  28. 28.
    Ichimiya T, Takeoka K, Hiramatsu K, Hirai K, Yamasaki T, Nasu M (1996) The influence of azithromycin on the biofilm formation of Pseudomonas aeruginosa in vitro. Chemotherapy 42(3): 186–91PubMedGoogle Scholar
  29. 29.
    Kobayashi H (1995) Biofilm disease: its clinical manifestation and therapeutic possibilities of macrolides. Am J Med 99(6A): 26S–30SCrossRefPubMedGoogle Scholar
  30. 30.
    Ripoll L, Reinert P, Pepin LF, Lagrange PH (1996) Interaction of macrolides with alpha dornase during DNA hydrolysis. J Antimicrob Chemother37(5): 987–91PubMedGoogle Scholar
  31. 31.
    Menninger JR, Coleman RA, Tsai LN (1994) Erythromycin, lincosamides, peptidyl-tRNA dissociation, and ribosome editing. Mol Gen Genet 243(2): 225–33PubMedGoogle Scholar
  32. 32.
    Tateda K, Ishii Y, Hirakata Y, Matsumoto T, Ohno A, Yamaguchi K (1994) Profiles of outer membrane proteins and lipopolysaccharide of Pseudomonas aeruginosa grown in the presence of sub-MICs of macrolide antibiotics and their relation to enhanced serum sensitivity. J Antimicrob Chemother 34(6): 931–42PubMedGoogle Scholar
  33. 33.
    Tateda K, Hirakata Y, Furuya N, Ohno A, Yamaguchi K (1993) Effects of sub-MICs of erythromycin and other macrolide antibiotics on serum sensitivity of Pseudomonas aeruginosa. Antimicrob Agents Chemother 37(4): 675–80PubMedGoogle Scholar
  34. 34.
    Shibl AM (1985) Effect of antibiotics on adherence of microorganisms to epithelial cell surfaces. Rev Infect Dis 7(1): 51–65PubMedGoogle Scholar
  35. 35.
    Yamasaki T, Ichimiya T, Hirai K, Hiramatsu K, Nasu M (1997) Effect of antimicrobial agents on the piliation of Pseudomonas aeruginosa and adherence to mouse tracheal epithelium. J Chemother 9(1): 32–7PubMedGoogle Scholar
  36. 36.
    Kawamura-Sato K, Iinuma Y, Hasegawa T, Horii T, Yamashino T, Ohta M (2000) Effect of subinhibitory concentrations of macrolides on expression of flagellin in Pseudomonas aeruginosa and Proteus mirabilis. Antimicrob Agents Chemother 44(10): 2869–72CrossRefPubMedGoogle Scholar
  37. 37.
    Saiman L, Chen Y, Gabriel PS, Knirsch C (2002) Synergistic activities of macrolide antibiotics against Pseudomonas aeruginosa, Burkholderia cepacia, Stenotrophomonas maltophilia, and Alcaligenes xylosoxidans isolated from patients with cystic fibrosis. Antimicrob Agents Chemother 46(4): 1105–7CrossRefPubMedGoogle Scholar
  38. 38.
    Bui KQ, Banevicius MA, Nightingale CA, Quintiliani R, Nicolau DP (2000) In vitro and in vivo influence of adjunct clarithromycin on the treatment of mucoid Pseudomonas aeruginosa. J Antimicrob Chemother 45(1): 57–62CrossRefPubMedGoogle Scholar
  39. 39.
    Yanagihara K, Tomono K, Sawai T, Kuroki M, Kaneko Y, Ohno H, Higashiyama Y, Miyazaki Y, Hirakata Y, Maesaki S et al (2000) Combination therapy for chronic Pseudomonas aeruginosa respiratory infection associated with biofilm formation. J Antimicrob Chemother 46(1): 69–72CrossRefPubMedGoogle Scholar
  40. 40.
    Tateda K, Ishii Y, Matsumoto T, Kobayashi T, Miyazaki S, Yamaguchi K (2000) Potential of macrolide antibiotics to inhibit protein synthesis of Pseudomonas aeruginosa: suppression of virulence factors and stress response. J Infect Chemother 6(1): 1–7CrossRefPubMedGoogle Scholar
  41. 41.
    Lam J, Chan R, Lam K, Costerton JW (1980) Production of mucoid microcolonies by Pseudomonas aeruginosa within infected lungs in cystic fibrosis. Infect Immun 28(2):546–56PubMedGoogle Scholar
  42. 42.
    Gilligan PH (1991) Microbiology of airway disease in patients with cystic fibrosis. Clin Microbiol Rev 4(1): 35–51PubMedGoogle Scholar
  43. 43.
    Gambello MJ, Iglewski BH (1991) Cloning and characterization of the Pseudomonas aeruginosa lasR gene, a transcriptional activator of elastase expression. J Bacteriol 173(9): 3000–9PubMedGoogle Scholar
  44. 44.
    Ochsner UA, Koch AK, Fiechter A, Reiser J (1994) Isolation and characterization of a regulatory gene affecting rhamnolipid biosurfactant synthesis in Pseudomonas aeruginosa. J Bacteriol 176(7): 2044–54PubMedGoogle Scholar
  45. 45.
    Rumbaugh KP, Griswold JA, Iglewski BH, Hamood AN (1999) Contribution of quorum sensing to the virulence of Pseudomonas aeruginosa in burn wound infections. Infect Immun 67(11): 5854–62PubMedGoogle Scholar
  46. 46.
    Pearson JP, Feldman M, Iglewski BH, Prince A (2000) Pseudomonas aeruginosa cell-to-cell signaling is required for virulence in a model of acute pulmonary infection. Infect Immun 68(7): 4331–4CrossRefPubMedGoogle Scholar
  47. 47.
    Smith RS, Harris SG, Phipps R, Iglewski BH (2002) The Pseudomonas aeruginosa quorum-sensing molecule N-(3-oxododecanoyl)homoserine lactone contributes to virulence and induces inflammation in vivo. J Bacteriol 184(4): 1132–9CrossRefPubMedGoogle Scholar
  48. 48.
    Wu H, Song Z, Givskov M, Doring G, Worlitzsch D, Mathee K, Rygaard J, Hoiby N (2001) Pseudomonas aeruginosa mutations in lasI and rhlI quorum sensing systems result in milder chronic lung infection. Microbiology 147 (Pt 5): 1105–13PubMedGoogle Scholar
  49. 49.
    Singh PK, Schaefer AL, Parsek MR, Moninger TO, Welsh MJ, Greenberg EP (2000) Quorum-sensing signals indicate that cystic fibrosis lungs are infected with bacterial biofilms. Nature 407(6805): 762–4CrossRefPubMedGoogle Scholar
  50. 50.
    Parsek MR, Greenberg EP (1999) Quorum sensing signals in development of Pseudomonas aeruginosa biofilms. Methods Enzymol 310: 43–55PubMedGoogle Scholar
  51. 51.
    Parsek MR, Greenberg EP (2000) Acyl-homoserine lactone quorum sensing in gram-negative bacteria: a signaling mechanism involved in associations with higher organisms. Proc Natl Acad Sci USA 97(16): 8789–93CrossRefPubMedGoogle Scholar
  52. 52.
    De Kievit TR, Iglewski BH (1999) Quorum sensing, gene expression, and Pseudomonas biofilms. Methods Enzymol 310: 117–28PubMedGoogle Scholar
  53. 53.
    Sauer K, Camper AK, Ehrlich GD, Costerton JW, Davies DG (2002) Pseudomonas aeruginosa displays multiple phenotypes during development as a biofilm. J Bacteriol 184(4): 1140–54CrossRefPubMedGoogle Scholar
  54. 54.
    Storey DG, Ujack EE, Rabin HR, Mitchell I (1998) Pseudomonas aeruginosa lasR transcription correlates with the transcription of lasA, lasB, and toxA in chronic lung infections associated with cystic fibrosis. Infect Immun 66(6): 2521–8PubMedGoogle Scholar
  55. 55.
    Erickson DL, Endersby R, Kirkham A, Stuber K, Vollman DD, Rabin HR, Mitchell I, Storey DG (2002) Pseudomonas aeruginosa quorum-sensing systems may control virulence factor expression in the lungs of patients with cystic fibrosis. Infect Immun 70(4):1783–90CrossRefPubMedGoogle Scholar
  56. 56.
    Charlton TS, de Nys R, Netting A, Kumar N, Hentzer M, Givskov M, Kjelleberg S (2000) A novel and sensitive method for the quantification of N-3-oxoacyl homoserine lactones using gas chromatography-mass spectrometry: application to a model bacterial biofilm. Environ Microbiol 2(5): 530–41CrossRefPubMedGoogle Scholar
  57. 57.
    DiMango E, Zar HJ, Bryan R, Prince A (1995) Diverse Pseudomonas aeruginosa gene products stimulate respiratory epithelial cells to produce interleukin-8. J Clin Invest 96(5): 2204–10PubMedGoogle Scholar
  58. 58.
    Smith RS, Fedyk ER, Springer TA, Mukaida N, Iglewski BH, Phipps RP (2001) IL-8 production in human lung fibroblasts and epithelial cells activated by the Pseudomonas autoinducer N-3-oxododecanoyl homoserine lactone is transcriptionally regulated by NF-kappa B and activator protein-2. J Immunol 167(1): 366–74PubMedGoogle Scholar
  59. 59.
    Tateda K, Ishii Y, Horikawa M, Matsumoto T, Miyairi S, Pechere JC, Standiford TJ, Ishiguro M, Yamaguchi K (2003) The Pseudomonas aeruginosa autoinducer N-3-oxododecanoyl homoserine lactone accelerates apoptosis in macrophages and neutrophils. Infect Immun 71(10): 5785–93CrossRefPubMedGoogle Scholar
  60. 60.
    de Kievit TR, Iglewski BH (2000) Bacterial quorum sensing in pathogenic relationships. Infect Immun 68(9): 4839–49CrossRefPubMedGoogle Scholar
  61. 61.
    Miller MB, Bassler BL (2001) Quorum sensing in bacteria. Annu Rev Microbiol 55:165–99CrossRefPubMedGoogle Scholar
  62. 62.
    Whitehead NA, Barnard AM, Slater H, Simpson NJ, Salmond GP (2001) Quorum-sensing in Gram-negative bacteria. FEMS Microbiol Rev 25(4): 365–404CrossRefPubMedGoogle Scholar
  63. 63.
    Schauder S, Bassler BL (2001) The languages of bacteria. Genes Dev 15(12): 1468–80CrossRefPubMedGoogle Scholar
  64. 64.
    Reverchon S, Chantegrel B, Deshayes C, Doutheau A, Cotte-Pattat N (2002) New synthetic analogues of N-acyl homoserine lactones as agonists or antagonists of transcriptional regulators involved in bacterial quorum sensing. Bioorg Med Chem Lett 12(8): 1153–7CrossRefPubMedGoogle Scholar
  65. 65.
    Smith KM, Bu Y, Suga H (2003) Induction and inhibition of Pseudomonas aeruginosa quorum sensing by synthetic autoinducer analogs. Chem Biol 10(1): 81–9CrossRefPubMedGoogle Scholar
  66. 66.
    Hentzer M, Wu H, Andersen JB, Riedel K, Rasmussen TB, Bagge N, Kumar N, Schembri MA, Song Z, Kristoffersen P et al (2003) Attenuation of Pseudomonas aeruginosa virulence by quorum sensing inhibitors. Embo J 22(15): 3803–15CrossRefPubMedGoogle Scholar
  67. 67.
    Tateda K, Comte R, Pechere JC, Kohler T, Yamaguchi K, Van Delden C (2001) Azithromycin inhibits quorum sensing in Pseudomonas aeruginosa. Antimicrob Agents Chemother 45(6): 1930–3CrossRefPubMedGoogle Scholar

Copyright information

© Birkhäuser Verlag Basel/Switzerland 2005

Authors and Affiliations

  • Kazuhiro Tateda
    • 1
  • Theodore J. Standiford
    • 2
  • Keizo Yamaguchi
    • 1
  1. 1.Department of Microbiology and Infectious DiseaseToho University School of MedicineTokyoJapan
  2. 2.Pulmonary and Critical Care MedicineUniversity of Michigan Medical SchoolAnn ArborUSA

Personalised recommendations