Skip to main content

Composition

Combining Web Service Functionality in Composite Orchestrations

  • Chapter
Semantic Web Services
  • 1031 Accesses

This chapter deals about Semantically annotated Web Service (SWS) composition, one of the main challenges for the Semantic Web. We define the principles of SWS composition as well as the difficulties it raises. We follow with an overview of the different approaches envisioned in the research community. We also present an efficient solving method for this problem based on configuration. This technic uses a constrained object model as knowledge representation, which we precisely define in this chapter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 59.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. P. Albert, L. Henocque, and M. Kleiner. Configuration Based Workflow Composition. In Proceedings of International Conference on Web Services ICWS’05, pages 285–292, Orlando, Florida, USA, 2005.

    Google Scholar 

  2. P. Albert, L. Henocque, and M. Kleiner. A Constrained Object Model for Configuration Based Workflow Composition. In Revised Selected papers of the Third International Conference on Business Process Management Workshops BPM-05-WSCOBPM, pages 102–115, Nancy, France, September 2006.

    Google Scholar 

  3. M. Baldoni, C. Baroglio, A. Martelli, and V. Patti. Reasoning About Interaction Protocols for Web Service Composition. In Proceedings of 1st International Workshop on Web Services and Formal Methods (web service-FM 2004), Pisa, Italy, February 2004.

    Google Scholar 

  4. V.R. Benjamins and D. Fensel. Editorial: Problem Solving Methods. Special Issue on Problem-Solving Methods. International Journal of Human-Computer Studies (IJHCS), 49(4):305–313, 1998.

    Article  Google Scholar 

  5. L. Bettini, V. Bono, and B. Venneri. O’klaim: A Coordination Language with Mobile Mixins. In Proceedings of COORDINATION-2004, pages 20–37. LNCS, Springer-Verlag 2004.

    Google Scholar 

  6. A. J. Bonner and M Kifer. Transaction Logic Programming. Technical Report CSRI-323. Technical report, CSRI, November 1995.

    Google Scholar 

  7. E. Börger and R. Stärk. Abstract State Machines. A Method for High-Level System Design and Analysis. Springer-Verlag, 2003.

    Google Scholar 

  8. A. Brogi, C. Canal, and A. Pimentel, E. Vallecillo. Formalizing Web Services Choreographies. In Proceedings of 1st International Workshop on Web Services and Formal Methods (web service-FM 2004), Pisa, Italy, February 2004.

    Google Scholar 

  9. M. Carman, L. Serafini, and P. Traverso. Web Service Composition as Planning. In Proceedings of ICAPS-03 International Conference on Automated Planning and Scheduling, Trento, Italy, June 2003.

    Google Scholar 

  10. I. Constantinescu, W. Binder, and B. Faltings. Flexible and Efficient Matchmaking and Ranking in Service Directories. In 2005 IEEE International Conference on Web Services (ICWS 2005), pages 5–12, Florida, USA, July 2005. IEEE Computer Society.

    Google Scholar 

  11. I. Constantinescu, B. Faltings, and W. Binder. Large Scale, Type-Compatible Service Composition. In IEEE International Conference on Web Services (ICWS 2004), pages 506–513, San Diego, USA, July 2004. IEEE Computer Society.

    Google Scholar 

  12. R. Dijkman and M. Dumas. Service-Oriented Design: A Multi-Viewpoint Approach, CTIT Technical Report Series No. 04-09. Technical Report, Centre for Telematics and Information Technology, University of Twente, The Netherlands, February 2004.

    Google Scholar 

  13. D. Prashant, R. Goodwin, R. Akkiraju, and K. Verma. Dynamic Workflow Composition Using Markov Decision Processes. International Journal of Web Services Research, 2(1):1–17, January – March 2005.

    Google Scholar 

  14. A. Felfernig, G. Friedrich, D. Jannach, and M. Zanker. Configuration Knowledge Representation Using UML/OCL. In Proceedings of the 5th International Conference on The Unified Modeling Language, pages 49–62. Springer-Verlag, 2002.

    Google Scholar 

  15. D. Fensel, E. Motta, F. van Harmelen, V. R. Benjamins, M. Crubézy, S. Decker, M. Gaspari, R. Groenboom, W. E. Grosso, M. A. Musen, E. Plaza, G. Schreiber, R. Studer, and B. J. Wielinga. The Unified Problem-Solving Method Development Language UPML. Knowledge and Inference Systems, 5(1):83–131, 2003.

    Article  Google Scholar 

  16. G. Fleischanderl, G. Friedrich, A. HaselbÖck, H. Schreiner, and M. Stumptner. Configuring Large-Scale Systems With Generative Constraint Satisfaction. IEEE Intelligent Systems, Special issue on Configuration, 13(7), 1998.

    Google Scholar 

  17. R. Ginis and K.M. Chandy. Service Composition Issues for Distributed Business Processes. In Proceedings of the 2003 International Conference on Web Services (ICWS 2003), pages 27–33, Las Vegas, Nevada, USA, June 23 - 26 2003.

    Google Scholar 

  18. J.-Y Girard. Linear Logic. Theoretical Computer Science, 50:1–102, 1987.

    Article  MATH  MathSciNet  Google Scholar 

  19. A. Gónez-Pérez, R. González-Cabero, and M. Lama. A Framework for Design and Composition of Semantic Web Services. In Semantic Web Services, 2004 AAAI Spring Symposium Series, pages 113–120, March 2004.

    Google Scholar 

  20. Object Management Group. UML v. 2.0 Specification. OMG, 2003.

    Google Scholar 

  21. Object Management Group. UML 2 Superstructure. Technical Report 2.0, OMG, 2004.

    Google Scholar 

  22. D. Harel. Statecharts: A Visual Formalism for Complex Systems. Science of Computer Programming, 8:231–274, 1987.

    Article  MATH  MathSciNet  Google Scholar 

  23. L. Henocque. Modeling Object Oriented Constraint Programs in Z. RACSAM (Revista de la Real Academia De Ciencias serie A Mathematicas), Special Issue about Artificial Intelligence and Symbolic Computing, pages 127–152, 2004.

    Google Scholar 

  24. K. Jensen. Coloured Petri Nets, Basic Concepts, Analysis Methods and Practical Use. Volume 1 and 2. Springer-Verlag, 1997.

    Google Scholar 

  25. J.E. Johnson, D.E Langworthy, L. Lamport, and F.H. Vogt. Formal Specification of a Web Services Protocol. In G. Zavattaro and M. Bravetti, editors, Proceedings of the 1st International Workshop on Web Services and Formal Methods, Pisa, Italy, February 2004.

    Google Scholar 

  26. U. Junker and D. Mailharro. The Logic of ILOG (j)Configurator: Combining Constraint Programming With a Description Logic. In Proceedings of Workshop on Configuration, IJCAI-03, pages 13–20, 2003.

    Google Scholar 

  27. M. Kifer, G. Lausen, and J. Wu. Logical Foundations of Object-Oriented and Frame-Based Languages. Journal of the ACM, 42(4):741–843, 1995.

    Article  MATH  MathSciNet  Google Scholar 

  28. L. Lamport. Specifying Concurrent Systems with TLA+. Calculational System Design, 173:183–247, March 1999.

    MathSciNet  Google Scholar 

  29. H. Levesque, R. Reiter, Y. Lesperance, F. Lin, and R. Scherl. Golog: A Logic Programming Language for Dynamic Domains. Journal of Logic Programming, 31(1-3):59–84, 1997.

    Article  MATH  MathSciNet  Google Scholar 

  30. D. Mailharro. A Classification and Constraint Based Framework for Configuration AI-EDAM, Special Issue on Configuration, 12(4):383 – 397, 1998.

    Google Scholar 

  31. S. Marcus and J. McDermott. SALT: A Knowledge Acquisition Language for Propose and Revise Systems. Journal of Artificial Intelligence, 39(1):1–37, 1989.

    Article  MATH  Google Scholar 

  32. S. McIlraith and T. Son. Adapting Golog for Composition of Semantic Web Services. In Proceedings of Conference on Knowledge Representation and Reasoning, April 2002.

    Google Scholar 

  33. R. Milner. Communication and Concurrency. Prentice Hall, 1989.

    Google Scholar 

  34. S. Mittal and B. Falkenhainer. Dynamic Constraint Satisfaction Problems. In Proceedings of AAAI-90, pages 25–32, 1990.

    Google Scholar 

  35. B. Nebel. Reasoning and Revision in Hybrid Representation Systems. LNAI422, Springer-Verlag, 1990.

    Google Scholar 

  36. B. Norton, S. Foster, and A. Hughes. A Compositional Operational Semantics for OWL-S. In Proceedings 2nd Workshop on Web Services and Formal Methods (WS-FM 2005), 2005.

    Google Scholar 

  37. M. Paolucci, T. Kawamura, T.R. Payne, and K. Sycara. Semantic Matching of Web Services Capabilities. In Proceedings of the 1st International Semantic Web Conference (ISWC), 2002.

    Google Scholar 

  38. M. Pistore, F. Barbon, P. Bertoli, D. Shaparau, and P. Traverso. Planning and Monitoring Web Service Composition. In Proceedings of the Workshop on Planning and Scheduling for Web and Grid Services held in conjunction with ICAPS-2004, Whistler,British Columbia, Canada, June 2004.

    Google Scholar 

  39. S.R. Ponnekanti and A. Fox. Sword: A Developer Toolkit for Web Service Composition. In Proceedings of the 11th International WWW Conference, pages 83–107, Hawaii, May 2002.

    Google Scholar 

  40. J. Rao, P. Kungas, and M. Matskin. Logic-Based Web Service Composition: From Service Description to Process Model. In Proceedings of the 2004 IEEE International Conference on Web Services, ICWS 2004, San Diego, California, USA, July 2004.

    Google Scholar 

  41. R. Reiter. Knowledge in Action: Logical Foundations for Specifying and Implementing Dynamical Systems. MIT Press, 2001.

    Google Scholar 

  42. C. Schlenoff, M. Gruninger, M. Ciocoiu, and J Lee. The Essence of the Process Specification Language. Transactions of the Society for Computer Simulation International, Special Issue on Modeling and Simulation in Manufacturing Systems, 16, No. 4:204–216, December 1999.

    Google Scholar 

  43. A.E.F. Seghrouchni and S Haddad. A Recursive Model for Distributed Planning. In Proceedings of the 2nd International Conference on Multi-Agent Systems (ICMAS-96), pages 307–314, Kyoto, Japan, 1996. IEEE.

    Google Scholar 

  44. E. Sirin, J. Hendler, and B. Parsia. Semi Automatic Composition of Web Services Using Semantic Descriptions. In Proceedings of the ICEIS-2003 Workshop on Web Services: Modeling, Architecture and Infrastructure, Angers, France, April 2003.

    Google Scholar 

  45. E. Sirin, B. Parsia, D. Wu, J. Hendler, and D. Nau. HTN Planning for Web Service Composition Using SHOP2. Journal of Web Semantics, 1(4):377–396, 2004.

    Google Scholar 

  46. T. Soininen, I. Niemelõ, J. Tiihonen, and R. Sulonen. Unified Configuration Knowledge Representation Using Weight Constraint Rules. In ECAI-2000 Configuration Workshop, 2000.

    Google Scholar 

  47. J. M. Spivey. The Z Notation: A Reference Manual. Prentice Hall originally, now J.M. Spivey, 2001.

    Google Scholar 

  48. M. Stumptner. An Overview of Knowledge-Based Configuration. AI Communications, 10(2):111–125, June 1997.

    Google Scholar 

  49. S. Thakkar, C.A. Knoblock, J.L. Ambite, and C. Shahabi. Dynamically Composing Web Services From On-Line Sources. In Proceedings of AAAI-02 Workshop on Intelligent Service Integration, Edmonton, Canada, July 2002.

    Google Scholar 

  50. W. van der Aalst. Pi Calculus Versus Petri Nets: Let us Eat Humble Pie Rather Than Further Inflate the Pi Hype. BPTrends, 3(5):1–11, May 2005.

    Google Scholar 

  51. W.M.P. van der Aalst, L. Aldred, and M. Dumas. Design and Implementation of the YAWL System. QUT Technical Report, FIT-TR-2003-07. Technical report, Queensland University of Technology, Brisbane, 2003.

    Google Scholar 

  52. W.M.P. van der Aalst and A.H.M. ter Hofstede. YAWL: Yet Another Workflow Language. Information Systems, 30(4):245–275, 2005.

    Article  Google Scholar 

  53. W.M.P. van der Aalst, A.H.M. ter Hofstede, B. Kiepuszewski, and A.P. Barros. Workflow Patterns. Distributed and Parallel Databases, 14(3):5–51, July 2003.

    Article  Google Scholar 

  54. M. Viroli. Towards a Formal Foundation to Orchestration Languages. In Proceedings of 1st International Workshop on Web Services and Formal Methods (web service-FM 2004), Pisa, Italy, February 2004.

    Google Scholar 

  55. M. Vukovic and P. Robinson. Adaptive, Planning Based, Web Service Composition for Context Awareness. In Proceedings of the 2nd International Conference on Pervasive Computing, Vienna, Austria, 2004.

    Google Scholar 

  56. M. Wooldridge. Introduction to Multi Agent Systems. Wiley, 2002.

    Google Scholar 

  57. X. Yi and K. Kochut. A CP-Nets-Based Design and Verification Framework for Web Services Composition. In proceedings of 2004 IEEE International Conference on Web Services, July 2004, San Diego, California, USA, July 2004.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer

About this chapter

Cite this chapter

Henocque, L., Kleiner, M. (2007). Composition. In: Studer, R., Grimm, S., Abecker, A. (eds) Semantic Web Services. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-70894-4_9

Download citation

  • DOI: https://doi.org/10.1007/3-540-70894-4_9

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-70893-3

  • Online ISBN: 978-3-540-70894-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics