Skip to main content

Part of the book series: Springer Tracts in Modern Physics ((STMP,volume 225))

Abstract

The emission of electrons from solid surfaces under photon and electron impact is discussed. The focus of this contribution is on the transport of electrons from their point of generation inside the solid to the surface. The physical quantities characterizing the electron-solid interaction are introduced and their sources in the literature are given. The theory for multiple scattering is outlined in some detail and spectrum processing procedures based on it are explained. The theoretical concepts are illustrated by means of experimental examples. The considered phenomena include elastic and inelastic electron reflection from solid surfaces, Auger- and photoelectron emission and secondary electron emission.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. J. A. Venables, Developments in Electron Microscopy and Analysis (Academic Press, New York, 1995).

    Google Scholar 

  2. J. Goldstein, D. E. Newbury, P. Echlin, D. C. Joy, A. D. Romig, C. E. Lyman, C. Fiori, and E. Lifshin, Scanning Electron Microscopy and X-ray Microanalysis (Plenum, New York, London, 1992).

    Google Scholar 

  3. D. Briggs and J. Grant, eds., Surface Analysis by Auger and X-Ray Photoelectron Spectroscopy (IMPublications, Chichester, UK, 2003).

    Google Scholar 

  4. S. Hüfner, Photoelectron spectroscopy (Springer, Berlin, Heidelberg, New York, 1995).

    Google Scholar 

  5. H. Winter and F. Aumayr, in Trapping Highly Charged Ions: Fundamentals and Applications, edited by J. Gillaspy (NOVA Science Publisher Inc., New York, 1999).

    Google Scholar 

  6. H. S. W. Massey and E. Burhop, Electronic and Ionic Impact Processes (Clarendon Press, Oxford, 1952).

    Google Scholar 

  7. N. F. Mott and H. S. W. Massey, The theory of atomic collisions (Oxford University Press, Oxford, 1949).

    MATH  Google Scholar 

  8. A. Modinos, Thermionic and Secondary Electron Spectroscopy (Plenum, New York, 1984).

    Google Scholar 

  9. G. N. Fursey, Field Emission in Vacuum Microelectronics, 1st Ed. (Springer Verlag, Berlin–Heidelberg–New York, 2005).

    Google Scholar 

  10. W. Smekal, W. S. M. Werner, C. S. Fadley, and M. A. van Hove, J. Electron Spectrosc. Rel. Phen. 137, 183 (2004).

    Google Scholar 

  11. W. S. M. Werner, Surf. Interface Anal. 31, 141 (2001).

    Google Scholar 

  12. R. A. Bonham and T. G. Strand, J Chem Phys 39, 2200 (1963).

    ADS  Google Scholar 

  13. A. Jabłonski and H. Ebel, Surf. Interface Anal. 11, 627 (1988).

    Google Scholar 

  14. National Institute of Standards and Technology (NIST), NIST data bases SRDP 64, Gaithersburg MD (2003).

    Google Scholar 

  15. H. Raether, Excitations of Plasmons and Interband Transitions by Electrons (Springer, New York, 1980), vol 88 of Springer Tracts in Modern Physics.

    Google Scholar 

  16. P. Schattschneider, Fundamentals of Inelastic Electron Scattering (Springer, New York, Vienna, 1986).

    Google Scholar 

  17. R. F. Egerton, Electron Energy Loss Spectroscopy in the Electron Microscope (Plenum, New York and London, 1985).

    Google Scholar 

  18. L. D. Landau, E. M. Lifshitz, and L. P. Pitaevski, Electrodynamics of Continuous Media (Pergamom Press, Oxford, New York, 1984), 2nd edition, Translated by J. B. Sykes, J. S. Bell and M. J. Kearsley.

    Google Scholar 

  19. R. H. Ritchie, Phys. Rev. 106, 874 (1957).

    ADS  MathSciNet  Google Scholar 

  20. E. A. Stern and R. A. Ferrell, Phys. Rev. 120, 130 (1960).

    ADS  MathSciNet  Google Scholar 

  21. P. M. Echenique and J. B. Pendry, J. Phys. C: Solid State Phys 8, 2936 (1975).

    ADS  Google Scholar 

  22. R. Nunez, P. M. Echenique, and R. H. Ritchie, J. Phys. C: Solid State Phys 13, 4229 (1980).

    ADS  Google Scholar 

  23. F. Yubero and S. Tougaard, Phys. Rev. B46, 2486 (1992).

    ADS  Google Scholar 

  24. N. R. Arista, Phys. Rev. A49, 1885 (1994).

    ADS  Google Scholar 

  25. C. J. Tung, Y. F. Chen, C. M. Kwei, and T. L. Chou, Phys. Rev. B49, 16684 (1994).

    ADS  Google Scholar 

  26. C. Denton, J. L. Gervasoni, R. O. Barrachina, and N. R. Arista, Phys. Rev. A57, 4498 (1998).

    ADS  Google Scholar 

  27. M. Vicanek, Surf. Sci. 440, 1 (1999).

    ADS  Google Scholar 

  28. K. L. Aminov and J. B. Pedersen, Phys. Rev. B63, 125412 (2001).

    ADS  Google Scholar 

  29. D. W. Lynch and W. R. Hunter, Handbook of optical constants of solids, Sect. 2.1.III., in [32] (1985).

    Google Scholar 

  30. K. Glantschnig and C. Ambrosch-Draxl, Phys. Rev. (2006).

    Google Scholar 

  31. C. Ambrosch-Draxl and J. O. Sofo, Comp. Phys. Comm. 17, 1 (2006).

    ADS  Google Scholar 

  32. E. D. Palik, Handbook of optical constants of solids (Academic Press, New York, 1985).

    Google Scholar 

  33. E. D. Palik, Handbook of optical constants of solids II (Academic Press, New York, 1991).

    Google Scholar 

  34. B. L. Henke, E. M. Gullikson, and J. C. Davis, Atomic Data and Nuclear Data Tables 54, 181 (1993).

    ADS  Google Scholar 

  35. W. S. M. Werner, Surf. Sci. 600, L250 (2006a).

    ADS  Google Scholar 

  36. W. S. M. Werner and I. S. Tilinin, Surf. Sci. 268, L319 (1992).

    ADS  Google Scholar 

  37. I. S. Tilinin and W. S. M. Werner, Phys. Rev. B46, 13739 (1992).

    ADS  Google Scholar 

  38. K. M. Case and P. F. Zweifel, Linear Transport Theory (Addison-Wesley, Reading, MA, 1967).

    MATH  Google Scholar 

  39. S. Goudsmit and J. L. Saunderson, Phys. Rev. 57, 24 (1940).

    ADS  Google Scholar 

  40. L. D. Landau, J Phys (Moscow) 8, 201 (1944).

    Google Scholar 

  41. W. S. M. Werner, Phys. Rev. B71, 115415 (2005a).

    ADS  Google Scholar 

  42. W. S. M. Werner and P. Schattschneider, J. Electron Spectrosc. Rel. Phen. 143, 65 (2005).

    Google Scholar 

  43. W. S. M. Werner, Phys. Rev. B55, 14925 (1997).

    ADS  Google Scholar 

  44. A. Jabłeonski, Surf. Interface Anal. 14, 659 (1989).

    Google Scholar 

  45. S. Chandrasekhar, Radiative Transfer (Dover publications, New York, 1960).

    Google Scholar 

  46. V. V. Sobolev, A Treatise on radiative transfer (van Nostrand, Princeton, NJ, 1963).

    Google Scholar 

  47. I. S. Tilinin, Sov Phys JETP 55, 751 (1982).

    Google Scholar 

  48. I. S. Tilinin, A. Jabłonski, and S. Tougaard, Phys. Rev. B52, 5935 (1995).

    ADS  Google Scholar 

  49. W. S. M. Werner, I. S. Tilinin, and M. Hayek, Phys. Rev. B50, 4819 (1994).

    ADS  Google Scholar 

  50. W. S. M. Werner, Surf. Interface Anal. 37, 846 (2005b).

    Google Scholar 

  51. W. S. M. Werner, W. Smekal, and C. J. Powell, Simulation of Electron Spectra for Surface Analysis (SESSA), NIST data bases SRD–100, Gaithersburg MD (2005a).

    Google Scholar 

  52. W. S. M. Werner, H. Störi, and H. Winter, Surf. Sci. 518, L569 (2002).

    ADS  Google Scholar 

  53. W. S. M. Werner, Surf. Interface Anal. 35, 347 (2003a).

    Google Scholar 

  54. W. S. M. Werner, Surf. Sci. 526/3, L159 (2003b).

    ADS  Google Scholar 

  55. W. S. M. Werner, Phys. Rev. B74, 075421 (2006b).

    ADS  Google Scholar 

  56. W. S. M. Werner, Surf. Sci. 588, 26 (2005c).

    ADS  Google Scholar 

  57. W. S. M. Werner, C. Eisenmenger-Sittner, J. Zemek, and P. Jiricek, Phys. Rev. B67, 155412 (2003).

    ADS  Google Scholar 

  58. O. A. Baschenko, J. Electron Spectrosc. Rel. Phen. 57, 297 (1991).

    Google Scholar 

  59. O. A. Baschenko and A. E. Nesmeev, J. Electron Spectrosc. Rel. Phen. 57, 33 (1991).

    Google Scholar 

  60. P. Cumpson, J. Electron Spectrosc. Rel. Phen. 73, 25 (1995).

    Google Scholar 

  61. S. Tougaard, Surf. Interface Anal. 8, 257 (1986).

    Google Scholar 

  62. W. S. M. Werner, Surf. Interface Anal. 23, 737 (1995a).

    Google Scholar 

  63. S. Tougaard and I. Chorkendorff, Phys. Rev. B35, 6570 (1987).

    ADS  Google Scholar 

  64. W. S. M. Werner, Surf. Sci., cond-mat/0611053 (2006c).

    Google Scholar 

  65. W. S. M. Werner, Appl. Phys. Lett. (2006d).

    Google Scholar 

  66. W. S. M. Werner, Phys. Rev. B52, 2964 (1995b).

    ADS  Google Scholar 

  67. R. Oswald, E. Kasper, and K. Gaukler, J. Electron Spectrosc. Rel. Phen. 61, 251 (1993).

    Google Scholar 

  68. J. Zemek, P. Jiricek, W. S. M. Werner, B. Lesiak, and A. Jabłonski, Surf. Interface Anal. 38, 615 (2006).

    Google Scholar 

  69. W. F. Egelhoff, Phys. Rev. Lett. 71, 2883 (1993).

    ADS  Google Scholar 

  70. W. S. M. Werner and M. Hayek, Surf. Interface Anal. 22, 79 (1994).

    Google Scholar 

  71. W. S. M.Werner, W. Smekal, C. Tomastik, and H. Störi, Surf. Sci. 486, L461 (2001a).

    Google Scholar 

  72. W. S. M. Werner, W. Smekal, H. Störi and C. Eisenmenger-Sittner, J. Vac. Sci. Technol. A19, 2388 (2001).

    ADS  Google Scholar 

  73. W. S. M. Werner, W. Smekal, T. Cabela, C. Eisenmenger-Sittner, H. Störi, J. Electron Spectrosc. Rel. Phen. 114, 363 (2001).

    Google Scholar 

  74. Y. F. Chen, Surf. Sci. 345, 213 (1996).

    ADS  Google Scholar 

  75. S. Tanuma, C. J. Powell, and D. R. Penn, Surf. Interface Anal. 21, 165 (1994).

    Google Scholar 

  76. C. J. Powell and A. Jabłonski, J Phys Chem Ref Data 28, 19 (1999).

    ADS  Google Scholar 

  77. K. Goto, N. Sakakibara, Y. Takeichi, and Y. Sakai, Surf. Interface Anal. 22, 75 (1994).

    Google Scholar 

  78. P. H. Citrin, G. K. Wertheim, and Y. Baer, Phys. Rev. B16, 4256 (1977).

    ADS  Google Scholar 

  79. P. W. Anderson, Phys. Rev. Lett. 18, 1049 (1967).

    ADS  Google Scholar 

  80. S. Doniach and M. Sunjic, J Phys C 3, 285 (1970).

    ADS  Google Scholar 

  81. H. W. Haak, G. A. Sawatzky, and T. D. Thomas, Phys. Rev. Lett. 41, 1825 (1978).

    ADS  Google Scholar 

  82. S. M. Thurgate, Surf. Interface Anal. 20, 627 (1993).

    Google Scholar 

  83. E. Jensen, R. A. Bartynski, S. L. Hulbert, and E. D. Johnson, Rev. Sci. Instrum. 63, 3013 (1992).

    ADS  Google Scholar 

  84. W. S. M. Werner, W. Smekal, H. Störi, H. Winter, G. Stefani, A. Ruocco, F. Offi, R. Gotter, A. Morgante, and F. Tomasini, Phys. Rev. Lett. 94, 038302 (2005b).

    ADS  Google Scholar 

  85. A. Pernaselci and M. Cini, J. Electron Spectrosc. Rel. Phen. 82, 79 (1996).

    Google Scholar 

  86. E. Jensen, R. A. Bartynski, S. L. Hulbert, E. D. Johnson, and R. Garrett, Phys. Rev. Lett. 62, 71 (1989).

    ADS  Google Scholar 

  87. S. M. Thurgate and Z. T. Jang, Surf. Sci. 466, L807 (2000).

    Google Scholar 

  88. M. Ohno, J. Electron Spectrosc. Rel. Phen. 124, 53 (2002).

    Google Scholar 

  89. W. S. M. Werner, H. Trattnik, J. Brenner, and H. Störi, Surf. Sci. 495, 107 (2001b).

    ADS  Google Scholar 

  90. D. C. Joy, Scanning 17, 270 (1995).

    Google Scholar 

  91. D. C. Joy, http://pciserver.bio.utk.edu/metrology/download/E-solid/ database.doc (2003).

  92. M. Rösler and W. Brauer, in Particle Induced Electron Emission I, edited by G. Höhler (Springer, Heidelberg, 1992), vol. 122, pp. 1–65.

    Google Scholar 

  93. A. Dubus, J. Devooght, and J. C. Dehaes, Phys. Rev. B36, 5110 (1987).

    ADS  Google Scholar 

  94. J. Schou, Phys. Rev. B22, 2141 (1980).

    ADS  Google Scholar 

  95. J. C. Kuhr and H. J. Fitting, J. Electron Spectrosc. Rel. Phen. 105, 257 (1999).

    Google Scholar 

  96. J. P. Ganachaud and M. Cailler, Surf. Sci. 83, 498 (1979a).

    ADS  Google Scholar 

  97. J. P. Ganachaud and M. Cailler, Surf. Sci. 83, 519 (1979b).

    ADS  Google Scholar 

  98. A. C. Yates, Comp Phys Comm 2, 175 (1971).

    ADS  Google Scholar 

  99. A. Jablonski, F. Salvat, and C. J. Powell, J. Phys. Chem. Ref. Data 33, 409 (2004).

    ADS  Google Scholar 

  100. J. B. Pendry, Low Energy Electron Diffraction (Academic Press, London, New York, 1974).

    Google Scholar 

  101. M. Rösler and W. Brauer, Phys Stat Sol 148, 213 (1988).

    ADS  Google Scholar 

  102. D. Roptin, Ph.D. thesis, University of Nantes, Nantes, France (1975).

    Google Scholar 

  103. T. E. Everhart, N. Saeki, R. Shimizu, and T. Koshikawa, Journal of Applied Physics 47, 2941 (1976).

    ADS  Google Scholar 

  104. L. Reimer and C. Tolkamp, Scanning 3, 35 (1980).

    Google Scholar 

  105. D. A. Moncrie and P. R. Barker, Scanning 1, 195 (1976).

    Google Scholar 

  106. R. Bongeler, U. Golla, M. Kussens, L. Reimer, B. Schendler, R. Senkel, and M. Spranck, Scanning 15, 1 (1993).

    Google Scholar 

  107. R. Shimizu, J. Appl. Phys 45, 2107 (1974).

    ADS  Google Scholar 

  108. M. Kanter, Phys. Rev. 121, 1677 (1961).

    ADS  Google Scholar 

  109. W. Czaja, Journal of Applied Physics 37, 4236 (1966).

    ADS  Google Scholar 

  110. J. Philibert and E. Weinryb, C. R. Acad. Sci. 256, 4535 (1964).

    Google Scholar 

  111. H. Bruining and J. M. de Boer, Physica V, 17 (1938).

    ADS  Google Scholar 

  112. K. Kanaya and M. Kawakatsu, Journal of Applied Physics D5, 1727 (1972).

    ADS  Google Scholar 

  113. D. B. Wittry, Proc. 4th Conf. on X-ray Optics and Microanalysis, ed. R. Castaing, (Hermann:Paris) p. 168 (1966).

    Google Scholar 

  114. N. R. Whetten, Methods in Experimental Physics IV (Academic Press, New York, 1962).

    Google Scholar 

  115. I. M. Bronstein and B. S. Fraiman, Vtorichnaya Elektronnaya Emissiya (Nauka, 1969), (in Russian).

    Google Scholar 

  116. N. Hilleret, J. Bojko, O. Grobner, B. Henrist, C. Scheuerlein, and M. Taborelli, Proc. 7th European Particle Accelerator Conference, Vienna. p. 127 (2000).

    Google Scholar 

  117. V. V. Makarov and N. N. Petrov, Sov. Phys. Sol. State 23, 1028 (1981).

    Google Scholar 

  118. E. M. Baroody, Phys. Rev. 78, 780 (1950).

    MATH  ADS  Google Scholar 

  119. J. L. H. Jonker, Philips Research Repts. 7, 1 (1952).

    MathSciNet  Google Scholar 

  120. A. J. Dekker, Solid State Physics 6, 251 (1958).

    Google Scholar 

  121. G. F. Dionne, Journal of Applied Physics 46, 3347 (1975).

    ADS  Google Scholar 

  122. H. Seiler, Journal of Applied Physics 54, R1 (1983).

    ADS  Google Scholar 

Download references

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer

About this chapter

Cite this chapter

Werner, W.S. (2007). Photon and Electron Induced Electron Emission from Solid Surfaces. In: Slow Heavy-Particle Induced Electron Emission from Solid Surfaces. Springer Tracts in Modern Physics, vol 225. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-70789-1_2

Download citation

Publish with us

Policies and ethics