Advertisement

A Scalable Parallel Assembly for Irregular Meshes Based on a Block Distribution for a Parallel Block Direct Solver

  • David Goudin
  • Jean Roman
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 1947)

Abstract

This paper describes a distribution of elements for irregular finite element meshes as well as the associated parallel assembly algorithm, in the context of parallel solving of the resulting sparse linear system using a direct block solver. These algorithms are integrated in the software processing chain EMILIO being developped at LaBRI for structural mechanics applications. Some illustrative numerical experiments on IBM SP2 validate this study.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    P. Charrier and J. Roman. Algorithmique et calculs de complexité pour un solveur de type dissections emboîtées. Numerische Mathematik, 55:463–476, 1989.CrossRefMathSciNetGoogle Scholar
  2. 2.
    D. Goudin, P. Hénon, F. Pellegrini, P. Ramet, J. Roman, and J.-J. Pesqué. Parallel sparse linear algebra and application to structural mechanics. accepted in Numerical Algorithms, Baltzer Science Publisher, 2000, to appear.Google Scholar
  3. 3.
    P. Hénon, P. Ramet, and J. Roman. A Mapping and Scheduling Algorithm for Parallel Sparse Fan-In Numerical Factorization. In Proceedings of EuroPAR’99, number 1685 in Lecture Notes in Computer Science, pages 1059–1067. Springer Verlag, 1999.Google Scholar
  4. 4.
    P. Henon, P. Ramet, and J. Roman. PaStiX: A Parallel Sparse Direct Solver Based on a Static Scheduling for Mixed 1D/2D Block Distributions. In Proccedings of Irregular’2000, number 1800 in Lecture Notes in Computer Science, pages 519–525. Springer Verlag, May 2000.Google Scholar
  5. 5.
    P. Laborde, B. Toson, and J.-J. Pesqué. On the consistent tangent operator algorithm for thermo-pastic problems. Comp. Methods Appl. Mech. Eng., 146:215–230, 1997.zbMATHCrossRefGoogle Scholar
  6. 6.
    F. Pellegrini and J. Roman. Sparse matrix ordering with scotch. In Proceedings of HPCN’97, number 1225 in Lecture Notes in Computer Science, pages 370–378. Springer Verlag, April 1997.Google Scholar
  7. 7.
    F. Pellegrini, J. Roman, and P. Amestoy. Hybridizing nested dissection and halo approximate minimum degree for e_cient sparse matrix ordering. In Proceedings of Irregular’99, number 1586 in Lecture Notes in Computer Science, pages 986–995. Springer Verlag, April 1999. Extended paper appeared in Concurrency: Practice and Experience, 12:69–84, 2000.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2001

Authors and Affiliations

  • David Goudin
    • 1
  • Jean Roman
    • 1
  1. 1.LaBRI Université Bordeaux IENSERB, CNRS UMR 5800Talence CedexFrance

Personalised recommendations