Alive Fishes Species Characterization from Video Sequences

  • Dahbia Semani
  • Christophe Saint-Jean
  • Carl Frélicot
  • Thierry Bouwmans
  • Pierre Courtellemont
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 2396)


This article presents a method suitable for the characterization of fishes evolving in a basin. It is based on the analysis of video sequences obtained from a fixed camera. One of the main difficulties of analyzing natural scenes acquired from an aquatic environment is the variability of illumination. This disturbs every phase of the whole process. We propose to make each task more robust. In particular, we propose to use a clustering method allowing to provide species parameters estimates that are less sensitive to outliers.


Video Sequence Global Cluster Deformable Object Statistical Pattern Recognition Species Characterization 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    M. R. Anderberg. Cluster Analysis for Applications. Academic Press, 1973.Google Scholar
  2. 2.
    N. Ayache. Artificial Vision for Mobile Robots: Stereo Vision and Multisensory perception. MIT Press, Cambridge, MA, 1991.Google Scholar
  3. 3.
    A. Cavallaro and T. Ebrahimi. Video object extraction based on adaptative background and statistical change detection, pages 465–475. In Proceedings of SPIE Electronic Imaging, San Jose, California, USA, January 2001.Google Scholar
  4. 4.
    R. Davé and R. Krishnapuram. Robust clustering methods: A unified view. IEEE Transactions on Fuzzy Systems, 5(2):270–293, 1997.CrossRefGoogle Scholar
  5. 5.
    A. P. Dempster, N. M. Laird, and D. B. Rubin. Maximum likelihood from incomplete data via the EM algorithm. Journal of the Royal Statistical Society series B, 39:1–38, 1977.zbMATHMathSciNetGoogle Scholar
  6. 6.
    H. Frigui and R. Krishnapuram. A robust competitive clustering algorithm with applications in computer vision. IEEE Trans. on Pattern Analysis and Machine Intelligence, 21(5):450–465, May 1999.Google Scholar
  7. 7.
    P. J. Huber. Robust Statistics. John Wiley, New York, 1981.zbMATHCrossRefGoogle Scholar
  8. 8.
    A. Jain, R. Duin, and J. Mao. Statistical pattern recognition: A review. IEEE Transactions on Pattern Analysis and Machine Intelligence, 22(1):4–38, 2000.CrossRefGoogle Scholar
  9. 9.
    A. Jain and P. Flynn. Image segmentation using clustering. in Advances in Image Understanding, K. Bowyer and N. Ahuja (Eds), IEEE Computer Society Press, pages 65–83, 1996.Google Scholar
  10. 10.
    R. Jain and H. Nagel. On the analysis of accumulative difference pictures from image sequences of real world scenes. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1(2):206–214, 1979.Google Scholar
  11. 11.
    R. Jain, R. Kasturi and B. G. Schunck. Machine Vision. McGRAW-HILL Inc., 1995.Google Scholar
  12. 12.
    G. McLachlan and D. Peel. Finite Mixture Models. Wiley and Sons, 2000. ISBN 0-471-00626-2.Google Scholar
  13. 13.
    E. Meier and F. Ade. Object detection and tracking in range image sequences by separation of image features, stuttgart, germany. In IEEE International Conference on Intelligent Vehicles, pages 176–181, 1998.Google Scholar
  14. 14.
    D. Peel and G. McLachlan. Robust mixture modelling using the t distribution. Statistics and Computing, 10(4):339–348, October 2000.Google Scholar
  15. 15.
    C. Saint-Jean, C. Frélicot, and B. Vachon. Clustering with EM: complex models vs. robust estimation, pages 872–881. In proceedings of SPR 2000: F. J. Ferri, J. M. Inesta, A. Amin, and P. Pudil (Eds.). Lectures Notes in Computer Science 1876, Springer-Verlag, 2000.Google Scholar
  16. 16.
    G. Schwarz. Estimating the dimension of a model. Annals of Statistics, 6:461–464, 1978.zbMATHMathSciNetCrossRefGoogle Scholar
  17. 17.
    Z. Tauber, Z. Li, and M. S. Drew. Local-based Visual Object Retrieval under Illumination Change, volume 4, pages 43–46. In Proceedings of the 15th International Conference on Pattern Recognition, Barcelona,Spain, 2000.Google Scholar
  18. 18.
    S. Theodoridis and K. Koutroumbas. Pattern Recognition. Academic Press Inc.-ISBN 0-12-686140-4, 1999.Google Scholar
  19. 19.
    Z. Zhang. Parameter estimation techniques: A tutorial with application to conic fitting. Technical Report RR-2676, Inria, 1995.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2002

Authors and Affiliations

  • Dahbia Semani
    • 1
  • Christophe Saint-Jean
    • 1
  • Carl Frélicot
    • 1
  • Thierry Bouwmans
    • 1
  • Pierre Courtellemont
    • 1
  1. 1.L3I - UPRESLa Rochelle Cedex 1France

Personalised recommendations