Graph-Based Methods for Vision: A Yorkist Manifesto

  • Edwin Hancock
  • Richard C. Wilson
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 2396)

Abstract

This paper provides an overview of our joint work on graph-matching. We commence by reviewing the literature which has motivated this work. We then proceed to review our contributions under the headings of 1) the probabilistic framework, 2) search and optimisation, 3) matrix methods, 4) segmentation and grouping, 5) learning and 6) applications.

Keywords

Object Recognition Machine Intelligence Edit Distance Graph Match Probabilistic Framework 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    J. Kittler and E. R. Hancock, “Combining Evidence in Probabilistic Relaxation,” International Journal of Pattern Recognition and Artificial Intelligence, 3, pp. 29–52, 1989.CrossRefGoogle Scholar
  2. 2.
    E. R. Hancock and J. Kittler, “Discrete Relaxation,” Pattern Recognition, 23, pp. 711–733, 1990.CrossRefGoogle Scholar
  3. 3.
    E. R. Hancock and J. Kittler, “Edge-labelling using Dictionary-based Probabilistic Relaxation,” IEEE Transactions on Pattern Analysis and Machine Intelligence, 12, pp 165–181 1990.CrossRefGoogle Scholar
  4. 4.
    R. C. Wilson, A. N. Evans and E. R. Hancock, “Relational Matching by Discrete Relaxation”, Image and Vision Computing, 13, pp. 411–422, 1995.CrossRefGoogle Scholar
  5. 5.
    R. C. Wilson and E. R. Hancock, “A Bayesian Compatibility Model for Graph Matching”, Pattern Recognition Letters, 17, pp. 263–276, 1996.CrossRefGoogle Scholar
  6. 6.
    M. L. Williams, R. C. Wilson, and E. R. Hancock, “Multiple Graph Matching with Bayesian Inference”, Pattern Recognition Letters, 18, pp. 1275–1281, 1997.CrossRefGoogle Scholar
  7. 7.
    R. C. Wilson and E. R. Hancock, “Structural Matching by Discrete Relaxation”, IEEE Transactions on Pattern Analysis and Machine Intelligence, 19, No. 6, pp. 634–648, 1997.CrossRefGoogle Scholar
  8. 8.
    A. D. J. Cross, R. C. Wilson and E. R. Hancock, “Genetic Search for Structural Matching”, Pattern Recognition, 30, pp. 953–970, 1997.CrossRefGoogle Scholar
  9. 9.
    A. M. Finch, R. C. Wilson and E. R. Hancock, “Matching Delaunay Graphs”, Pattern Recognition, 30, pp. 123–140, 1997.MATHCrossRefGoogle Scholar
  10. 10.
    A. M. Finch, R. C. Wilson and E. R. Hancock, “Symbolic Graph Matching with the EM Algorithm”, Pattern Recognition, 31, pp. 1777–1790, 1998.CrossRefGoogle Scholar
  11. 11.
    R. C. Wilson, A. D. J. Cross and E. R. Hancock, “Structural Matching with Active Triangulations”, Computer Vision and Image Understanding, 72, pp. 21–38, 1998.MATHCrossRefGoogle Scholar
  12. 12.
    A. D. J. Cross and E. R. Hancock, “Matching Buildings in Aerial Stereogramms using Genetic Search and Matched Filters”, ISPRS Journal of Photogrammetry and Remote Sensing, 53, pp. 95–107, 1998.CrossRefGoogle Scholar
  13. 13.
    A. M. Finch, R. C. Wilson and E. R. Hancock, “An Energy Function and Continuous Edit Process for Graph Matching”, Neural Computation, 10, pp. 1873–1894, 1998.CrossRefGoogle Scholar
  14. 14.
    A. D. J. Cross and E. R. Hancock, “Graph Matching with a Dual Step EM Algorithm”, IEEE Transactions on Pattern Analysis and Machine Intelligence, 20, pp. 1236–1253,, 1998.CrossRefGoogle Scholar
  15. 15.
    P. L Worthington and Edwin R Hancock, “New Constraints on Data-Closeness and Needle Map Consistency for Shape-from-Shaping”, IEEE Transactions on Pattern Analysis and Machine Intelligence, IEEE Computer Society Press, vol. 21, no. 12, pp 1250–1267, 1999.CrossRefGoogle Scholar
  16. 16.
    R. C. Wilson and E. R. Hancock, “Graph matching with hierarchical discrete relaxation”, Pattern Recognition Letters, 20, pp 1041–1052, 1999.MATHCrossRefGoogle Scholar
  17. 17.
    M. L. Williams and R. C. Wilson and E. R. Hancock, “Deterministic Search For Relational Graph Matching”, Pattern Recognition, 32, pp. 1255–1271, 1999.CrossRefGoogle Scholar
  18. 18.
    S. Moss and Richard C. Wilson and E. R. Hancock, “A mixture model of pose clustering”, Pattern Recognition Letters, 20, pp 1093–1101, 1999.CrossRefGoogle Scholar
  19. 19.
    B. Huet and E. R. Hancock, “Shape recognition from large image libraries by inexact graph matching”, Pattern Recognition Letters, 20, pp. 1259–1269, 1999.CrossRefGoogle Scholar
  20. 20.
    B. Huet and E. R. Hancock, “Line Pattern Retrieval Using Relational Histograms”, IEEE Transactions on Pattern Analysis and Machine Intelligence, 21, pp. 1363–1370, 1999.CrossRefGoogle Scholar
  21. 21.
    R. Myers, R. C. Wilson and E. R. Hancock, “Bayesian Graph Edit Distance”, IEEE Transactions on Pattern Analysis and Machine Intelligence, 22, pp 628–635, 2000.CrossRefGoogle Scholar
  22. 22.
    A. D. J. Cross and E. R. Hancock, “Convergence of a Hill Climbing Genetic Algorithm for Graph Matching”, Pattern Recognition, 33, pp 1863–1880, 2000.CrossRefGoogle Scholar
  23. 23.
    R. C. Wilson and E. R. Hancock, “Bias Variance Analysis for Controlling Adaptive Surface Meshes”, Computer Vision and Image Understanding 77, pp 25–47, 2000.CrossRefGoogle Scholar
  24. 24.
    R. Myers, E. R. Hancock, “Genetic Algorithms for Ambiguous Labelling Problems”, Pattern Recognition, 33, pp. 685–704, 2000.CrossRefGoogle Scholar
  25. 25.
    P. L. Worthington and E. R. Hancock, “Object Recognition using Shape-from-shading”, IEEE Transactions on Pattern Analysis and Machine Intelligence, 33, pp. 535–562, 2001.CrossRefGoogle Scholar
  26. 26.
    R. Myers and E. R. Hancock, “Least Commitment Graph Matching with Genetic Algorithms”, Pattern Recognition, 34, pp 375–394, 2001.MATHCrossRefGoogle Scholar
  27. 27.
    B. Luo and E. R. Hancock “Structural Matching using the EM algorithm and singular value decomposition”, IEEE Transactions on Pattern Analysis and Machine Intelligence, 23, pp. 1120–1136, 2001.CrossRefGoogle Scholar
  28. 28.
    R. Myers and E. R. Hancock, “Empirical Modelling of Genetic Algorithms”, Evolutionary Computation, 9, pp. 461–493, 2001.CrossRefGoogle Scholar
  29. 29.
    B. Huet and E. R. Hancock, “Relational Object Recognition from Large Structural Libraries”, Pattern Recognition, 2002.Google Scholar
  30. 30.
    M. Carcassoni and E. R. Hancock, “Spectral Correspondence for Point Pattern Matching”, Pattern Recognition, to appear 2002.Google Scholar
  31. 31.
    B. Luo and E. R. Hancock, “Iterative Procrustes Analysis using the EM Algorithm, Image and Vision Computing, to appear 2002.Google Scholar
  32. 32.
    B. Huet and E. R. Hancock, “Object Recognition from Large Structural Libraries”, Advances in Structural and Syntactic Pattern Recognition, Springer, Lecture Notes in Computer Science, 1451, pp. 190–199, 1998.Google Scholar
  33. 33.
    S. Moss and Edwin R. Hancock, “Structural Constraints for Pose Clustering”, Computer Analysis of Images and Patterns, Springer Lecture Notes in Computer Science, 1689, Franc Solina and Ales Leonardis eds.,pp. 632–640, 1999.Google Scholar
  34. 34.
    A. Torsello and E. R. Hancock, “A Skeletal Measure of 2D Shape Similarity”, Springer Lecture Notes in Computer Science, 2059, Edited by C. Arcelli, L. P. Cordella and G. Sannitii di Baja, pp. 260–271, 2001.Google Scholar
  35. 35.
    A. Robles-Kelly and E. R. Hancock, “An Expectation-Maximisation Framework for Perceptual Grouping”, Springer Lecture Notes in Computer Science, 2059, Edited by C. Arcelli, L. P. Cordella and G. Sannitii di Baja, pp. 594–605, 2001.Google Scholar
  36. 36.
    A. Kelly and E. R. Hancock, “A maximum likelihood framework for grouping and segmentation”, Springer Lecture notes in Computer Science, 2134, pp. 251–266, 2001.Google Scholar
  37. 37.
    A. Torsello and E. R. Hancock, “Efficiently computing weighted tree edit distance using relaxation labeling”, Springer Lecture notes in Computer Science, 2134, pp. 438–453, 2001.Google Scholar
  38. 38.
    B. Luo, A. Robles-Kelly, A. Torsello, R. C. Wilson, E. R. Hancock, “ Discovering Shape Categories by Clustering Shock Trees”, Springer Lecture notes in Computer Science, 2124, pp. 151–160, 2001.Google Scholar
  39. 39.
    B. Huet and E. R. Hancock, “Fuzzy Relational Distance for Large-scale Object Recognition”, IEEE Computer Society Computer Vision and Pattern Recognition Conference, IEEE Computer Society Press, pp. 138–143, 1998.Google Scholar
  40. 40.
    S. Moss and E. R. Hancock, “Pose Clustering with Density Estimation and Structural Constraints”, IEEE Computer Society Conference on Computer Vision and Pattern Recognition, IEEE Computer Society Press, Fort Collins, vol II, pp. 85–91, 1999.Google Scholar
  41. 41.
    M. Carcassoni and E. R. Hancock, “Point Pattern Matching with Robust Spectral Correspondence”, IEEE Computer Society Conference on Computer Vision and Pattern Recognition, IEEE Computer Society Press, I, pp. 649–655, 2000.Google Scholar
  42. 42.
    A. Robles-Kelly and E. R. Hancock, “A Maximum Likelihood Framework for Iterative Eigendecomposition”, Eighth International Conference on Computer Vision, IEEE Computer Society Press, Vancouver, Canada, pp. 654–661, 1999.Google Scholar
  43. 43.
    A. Robles-Kelly and E. R. Hancock, “ Graph Matching using Adjacency Matrix Markov Chains”, British Machine Vision Conference, pp. 383–390, 2001.Google Scholar
  44. 44.
    A. Torsello, B. Luo, A. Robles-Kelly, R. C. Wilson and E. R. Hancock, “A Probabilistic Framework for Graph Clustering”, IEEE Computer Vision and Pattern Recognition Conference, pp. 912–919, 2001.Google Scholar
  45. 45.
    A. Torsello and E. R. Hancock, “Matching and Embedding through Edit Union of Trees”, ECCV 2002, to appear.Google Scholar
  46. 46.
    H. G. Barrow and R. J. Popplestone. Relational descriptions in picture processing. Machine Intelligence, VI:377–396, 1971.Google Scholar
  47. 47.
    K. Boyer and A. Kak. Structural Stereopsis for 3D Vision. IEEE Transactions on Pattern Analysis and Machine Intelligence, 10:144–166, 1988.CrossRefGoogle Scholar
  48. 48.
    H. Bunke and K. Shearer. A graph distance metric based on the maximal common subgraph. Pattern Recognition Letters, 19:255–259, 1998.MATHCrossRefGoogle Scholar
  49. 49.
    H. Bunke. Error correcting graph matching: On the influence of the underlying cost function. IEEE Transactions on Pattern Analysis and Machine Intelligence, 21:917–922, 1999.CrossRefGoogle Scholar
  50. 50.
    W. J. Christmas, J. Kittler, and M. Petrou. Structural matching in computer vision using probabilistic relaxation. IEEE PAMI, 17(8):749–764, 1995.Google Scholar
  51. 51.
    F. R. K. Chung. Spectral Graph Theory. American Mathmatical Society Ed., CBMS series 92, 1997.Google Scholar
  52. 52.
    A. D. J. Cross, R. C. Wilson, and E. R. Hancock. Inexact graph matching with genetic search. Pattern Recognition, 30(6):953–970, 1997.CrossRefGoogle Scholar
  53. 53.
    M. A. Eshera and K. S. Fu. An image understanding system using attributed symbolic representation and inexact graph-matching. Journal of the Association for Computing Machinery, 8(5):604–618, 1986.Google Scholar
  54. 54.
    S. Gold and A. Rangarajan. A graduated assignment algorithm for graph matching. IEEE PAMI, 18(4):377–388, 1996.Google Scholar
  55. 55.
    M. Fischler and R. Elschlager. The representation and matching of pictorical structures. IEEE Transactions on Computers, 22(1):67–92, 1973.CrossRefGoogle Scholar
  56. 56.
    L. Herault, R. Horaud, F. Veillon, and J. J. Niez. Symbolic image matching by simulated annealing. In Proceedings of British Machine Vision Conference, pages319–324, 1990.Google Scholar
  57. 57.
    R. Horaud and H. Sossa. Polyhedral object recognition by indexing. Pattern Recognition, 28(12):1855–1870, 1995.CrossRefGoogle Scholar
  58. 58.
    M. I. Jordan and R. A. Jacobs. Hierarchical mixture of experts and the EM algorithm. Neural Computation, 6:181–214, 1994.CrossRefGoogle Scholar
  59. 59.
    B. Luo and E. R. Hancock. Relational constraints for point distribution models. Springer Lecture Notes in Computer Science, 2124:646–656, 2001.Google Scholar
  60. 60.
    M. Pellilo. Replicator equations, maximal cliques, and graph isomorphism. Neural Computation, 11(8):1933–1955, 1999.CrossRefGoogle Scholar
  61. 61.
    A. Sanfeliu and K. S. Fu. A distance measure between attributed relational graphs for pattern recognition. IEEE Trans. Systems, Man and Cybernetics, 13(3):353–362, May 1983.Google Scholar
  62. 62.
    G. L. Scott and H. C. Longuet-Higgins. An Algorithm for Associating the Features of 2 Images. Proceedings of the Royal Society of London Series B-Biological, 244 (1309):21–26, 1991.CrossRefGoogle Scholar
  63. 63.
    K. Sengupta and K. L. Boyer. Modelbase partitioning using property matrix spectra. Computer Vision and Image Understanding, 70(2):177–196, 1998.MATHCrossRefGoogle Scholar
  64. 64.
    L. G. Shapiro and R. M. Haralick. A metric for comparing relational descriptions. IEEE Transactions on Pattern Analysis and Machine Intelligence, 7(1):90–94, January 1985.Google Scholar
  65. 65.
    L. S. Shapiro and J. M. Brady. Feature-based Correspondence-An Eigenvector Approach. Image and Vision Computing, 10:283–288, 1992.CrossRefGoogle Scholar
  66. 66.
    J. Shi and J. Malik. Normalized cuts and image segmentation. PAMI, 22(8):888–905, August 2000.Google Scholar
  67. 67.
    A. Shokoufandeh, S. J. Dickinson, K. Siddiqi, and S. W. Zucker. Indexing using a spectral encoding of topological structure. In Proc. of the IEEE Conf. on Computer Vision and Pattern Recognition, pages 491–497, 1999.Google Scholar
  68. 68.
    P. D. Simic. Constrained nets for graph matching and other quadratic assignment problems. Neural Computation, 3:268–281, 1991.CrossRefGoogle Scholar
  69. 69.
    S. áTirthapura, D. Sharvit, P. Klein, and B. B. Kimia. Indexing based on edit-distance matching of shape graphs. Multimedia Storage And Archiving Systems III, 3527:25–36, 1998.Google Scholar
  70. 70.
    S. Umeyama. An eigen decomposition approach to weighted graph matching problems. IEEE Transactions on Pattern Analysis and Machine Intelligence, 10:695–703, 1988.MATHCrossRefGoogle Scholar
  71. 71.
    M. L. áWilliams, R. C. Wilson, and E. R. Hancock. Deterministic search for relational graph matching. Pattern Recognition, 32(7):1255–1271, 1999.CrossRefGoogle Scholar
  72. 72.
    A. K. C. Wong and M. You. Entropy and distance of random graphs with application to structural pattern recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence, 7:509–609, 1985.CrossRefGoogle Scholar
  73. 73.
    A. L. Yuille, P. Stolorz, and J. Utans. Statistical Physics, Mixtures of Distributions, and the EM Algorithm. Neural Computation, 6:334–340, 1994.CrossRefGoogle Scholar
  74. 74.
    M. Pelillo, K. Siddiqi, and S. W. Zucker. Matching hierarchical structures using association graphs. IEEE PAMI, 21(11):1105–1120, 1999.Google Scholar
  75. 75.
    W. J. Christmas, J. Kittler, and M. Petrou. Structural matching in computer vision using probabilistic relaxation. IEEE Transactions on Pattern Analysis and Machine Intelligence, 17(8):749–764, 1995.CrossRefGoogle Scholar
  76. 76.
    J. Kittler and E. R. Hancock. Combining evidence in probabilistic relaxation. IEEE PRAI, 3:29–51, 1989.Google Scholar
  77. 77.
    V. Levenshtein. Binary codes capable of correcting deletions, insertions, and reversals. Soviet Physics-Doklady, 10:707–710, 1966.MathSciNetGoogle Scholar
  78. 78.
    P. N. Suganthan, E. K. Teoh, and D. P. Mital. Pattern-recognition by graph matching using the potts mft neural networks.Google Scholar
  79. 79.
    T. Hofmann and J. M. Buhmann. Pairwise data clustering by deterministic annealing. PAMI, 19(2):192–192, February 1997.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2002

Authors and Affiliations

  • Edwin Hancock
    • 1
  • Richard C. Wilson
    • 1
  1. 1.Department of Computer ScienceUniversity of YorkUK

Personalised recommendations