Advertisement

Shear Strength of Unsaturated Soils: Experiments, DEM Simulations, and Micromechanical Analysis

  • Vincent Richefeu
  • Moulay Saïd El Youssoufi
  • Farhang Radjaï
Conference paper
Part of the Springer Proceedings in Physics 113 book series (SPPHY, volume 113)

Summary

We investigate shear strength properties of wet granular materials as a function of water content in the pendular state. Sand and glass beads were wetted and tested in a direct shear cell. In parallel, we carried out molecular dynamics simulations by using an explicit expression of capillary force as a function of interparticle distance, water bridge volume and surface tension. Experiments and numerical simulations are in good agreement. We show that the shear strength is mostly controlled by the distribution of liquid bonds. This property results leads to the saturation of shear strength as a function of water content. We arrive at the same conclusion by analyzing the shear strength from the microstructure and by accounting for particle polydispersity. Finally, we discuss the potentialities of the discrete element approach as applied to unsaturated soils.

Key words

granular materials capillary cohesion shear strength DEM simulations micromechanics 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Allen MP, Tildesley DJ (1987) Computer Simulation of Liquids. Oxford University Press, OxfordzbMATHGoogle Scholar
  2. Bardet JP, Proubet J (1991) Geotechnique 41(4):599–613Google Scholar
  3. Bika D, Gentzler M, Michaels J (2001) Powder Technology 117:98–112CrossRefGoogle Scholar
  4. Cundall PA, Strack ODL (1979) Geotechnique 29:47–65CrossRefGoogle Scholar
  5. Gröger T, Tüzün U, Heyes DM (2003) Powder Technology 133:203–215CrossRefGoogle Scholar
  6. Iveson S, Beathe J, Page N (2002) Powder Technology 127:149–161CrossRefGoogle Scholar
  7. Jiang MJ, Leroueil S, Konrad JM (2004) Computers and Geotechnics 31:473–489CrossRefGoogle Scholar
  8. Lian G, Thornton C, Adams MJ (1993) Journal of Colloid and Interface Science 161:138–147CrossRefGoogle Scholar
  9. Pierrat P, Caram H (1997) Powder Technology 91:83–93CrossRefGoogle Scholar
  10. Richefeu V (2005) Approche par éléments discrets 3D du comportement de matériaux granulaires cohésifs faiblement contraints. PhD Thesis, Université Montpellier 2, FranceGoogle Scholar
  11. Richefeu V, El Youssoufi MS, Peyroux R, Bohatier C (2005) Frictional contact and cohesion laws for Casagrande’s shear test on granular materials by 3D DEM – comparison with experiments. In: García-Rojo R, Herrmann HJ, McNamara S (eds) Powders and Grains 2005. A.A. Balkema Publisher, pp. 509–512.Google Scholar
  12. Richefeu V, El Youssoufi MS, Radjaï F (2006) Physical Review E 73:051304CrossRefGoogle Scholar
  13. Soulié F (2005) Cohésion par capillarité et comportement mécanique de milieux granulaires. PhD Thesis, Université Montpellier 2, FranceGoogle Scholar
  14. Soulié F, Cherblanc F, El Youssoufi MS, Saix C (2006) Int J Numer Anal Meth Geomech 30:213–228CrossRefzbMATHGoogle Scholar
  15. Staron L, Vilotte JP, Radjaï F (2002) Physical Review Letter 89(20):204302CrossRefGoogle Scholar
  16. Thornton C, Antony SJ (2000) Powder Technology 109:179–191CrossRefGoogle Scholar
  17. Thornton C, Zhang L (2001) A DEM comparison of different shear testing devices. In: Kishino (ed) Powders and Grains 2001. A.A. Balkema Publisher, pp. 183–190Google Scholar
  18. Willett C, Adans MJ, Johnson S, Seville J (2000) Langmuir 16:9396–9405CrossRefGoogle Scholar

Copyright information

© Springer 2007

Authors and Affiliations

  • Vincent Richefeu
    • 1
  • Moulay Saïd El Youssoufi
    • 1
  • Farhang Radjaï
    • 1
  1. 1.LMGC UMR CNRS 5508Université MontpellierMonpellier Cedex 5France

Personalised recommendations