Advertisement

The Soil Water Characteristics of Two-Component Sand Mixtures

  • Emöke Imre
  • Imre Laufer
  • Quoc Phong Trang
  • János Lörincz
  • Kálmán Rajkai
  • Tibor Firgi
  • Gábor Telekes
Part of the Springer Proceedings in Physics 113 book series (SPPHY, volume 113)

Summary

During an ongoing research the water retention curves of three sand fractions and 12 continuous and gap-graded two component sand mixtures with various composition ratio is measured. Due to the unexpectedly long equalization times in the low suction range complete data sets are not available yet. The existing data were used to test the newly set up sand box, an a priori water retention curve model, the van Genuchten double and the Fredlund–Xing models. Comparing the old and the new SWCC measuring boxes, first results indicate a constant bias between the measured retention data. The existing data partly support the a priori model and indicate that the present grading curve determination method is not sophisticated enough. According to the results of the model fitting, the van Genuchten model is slightly better than the Fredlund–Xing model. The model fit was better to the newly measured short data set than the fit to the whole SWCC data of similar sand mixtures. The van Genuchten permeability function indicated a more rapid permeability decrease for the finer grain size than the coarser soils explaining the experienced very long equalization times.

Key words

unsaturated soil functions sand measurement inverse problem 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Agus SS, Leong EC, Schanz T (2003) Assessment of statistical models for indirect determination of permeability functions from soil–water characteristic curves, Geotechnique 53(2)279–282CrossRefGoogle Scholar
  2. De Gennaro V, Cui YJ, Delage P, De Laure E (2002) On the use of high air entry value porous stones for suction control and related problems, In: Jucá JFT, de Campos TMP, Marinho FAM (eds) Unsaturated Soils. Proc 3rd Int Conf on Unsaturated Soils (UNSAT 2002), Recife, Brazil. Lisse: Swets & Zeitlinger 2:435–440Google Scholar
  3. Fredlund DG, Xing A (1994) Equations for the soil-water characteristic curve, Can Geotech J 31:521–532Google Scholar
  4. Groenevelt PH, Grant CD (2004) A new model for the soil–water retention curve that solves the problem of the residual water contents, Eur J Soil Sci 55:479–485CrossRefGoogle Scholar
  5. Imre E (1995) Characterization of dispersive and piping soils. In: Proc XI ECSMFE, Copenhagen 2:49–55Google Scholar
  6. Imre E (1996) Inverse problem solution with a geometrical method. In: Proc 2nd Int Conf on Inverse Problems in Engineering, Le Croisic, France:331–338Google Scholar
  7. Imre E (2002) Evaluation of “short” dissipation tests. In: Proc 12th Danube-European Conference: 499–503Google Scholar
  8. Imre E, Rajkai K, Genovese R, Jommi C, Lörincz J, Aradi L, Telekes G (2003) Soil water-retention curve for fractions and mixtures. Proc of UNSAT-ASIA, Osaka:451–456Google Scholar
  9. Imre E, Havrán K. Lörincz J, Rajkai K, Firgi T, Telekes G (2005) A model to predict the soil water characteristics of sand mixtures. In: Int Symp on Advanced Experimental Unsat Soil Mech, Trento, June 27–29Google Scholar
  10. Imre E, Rajkai K, Firgi T, Trang QP, Telekes G (2006) Closed-Form Functions for the Soil Water-Retention Curve of Sand Fractions and Sand Mixtures. In: 4th Int Conf On Unsaturated Soils, Arizona:2408–2419Google Scholar
  11. Lörincz J (1990) Relationship between grading entropy and dry bulk density of granular soils, Periodica Politechnica 34(3)255–265Google Scholar
  12. Lörincz J (1993a) On granular filters with the help of grading entropy. In: Conf on Filters in Geotechnical and Hydr Eng Brauns, Heibaum, Schuler, BALKEMA:67–69Google Scholar
  13. Lörincz J (1993b) On particle migration with the help of grading entropy. In: Proc Conf Filters in Geotechnical Hydr Eng Brauns, Heibaum, Schuler, BALKEMA:63–65Google Scholar
  14. Lörincz J, Imre E, Gálos M, Trang QP, Telekes G, Rajkai K, Fityus I (2005) Grading entropy variation due to soil crushing, Int J Geomechanics 5(4):311–320CrossRefGoogle Scholar
  15. Press WH, Flannery BP, Teukolsky SA, Wetterling WT (1986) Numerical Recipes. Cambridge Univ PressGoogle Scholar
  16. Rajkai K (1993) A talajok vízgazdálkodási tulajdonságainak vizsgálati módszerei. In: Búzás I (ed) Talaj-és agrokémiai vizsg. INDA4321 Kiadó, Bp. 115–160Google Scholar
  17. Várallyay Gy (1973) A talajok nedvességpotenciálja és új berendezés annak meghatározására az alacsony (atmoszféra alatti) tenziótartományban. Agrokémia és Talajtan 22:1–22Google Scholar
  18. Van Genuchten MT (1980) A closed form equation for predicting the hydraulic conductivity of unsaturated soils, Soil Sci Soc Am J 44:892–898CrossRefGoogle Scholar

Copyright information

© Springer 2007

Authors and Affiliations

  • Emöke Imre
    • 1
  • Imre Laufer
    • 1
  • Quoc Phong Trang
    • 1
  • János Lörincz
    • 2
  • Kálmán Rajkai
    • 3
  • Tibor Firgi
    • 4
  • Gábor Telekes
    • 4
  1. 1.Geotechnical Research Group of the Hungarian Academy of Sciences at BMEBudapestHungary
  2. 2.GradexBudapestHungary
  3. 3.Research Institute for Soil Science and Agricultural ChemistryHungarian Academy of SciencesBudapestHungary
  4. 4.St. István University, Ybl Miklós School of EngineeringBudapestHungary

Personalised recommendations