Geochemical Effects on Swelling Pressure of Highly Compacted Bentonite: Experiments and Model Analysis

  • Mingliang Xie
  • Helge C. Moog
  • Olaf Kolditz
Part of the Springer Proceedings in Physics 113 book series (SPPHY, volume 113)


Bentonite is widely selected to to be used as buffer material for highlevel nuclear waste (HLW) repositories owing to its favorite hydrogeological and geochemical properties. This is because mainly of its moisture swelling effect. Experimental and theoretical evidences indicate that the swelling characteristic is largely influenced by the porewater chemistry. A chemical swelling model for constrained condition is developed on the basis of diffuse double layer (DDL) theory and related the microscopic theory to the macroscopic swelling pressure. Experiments with purified clay fraction (< 2 μm) of MX‐80 bentonite were undertaken. The fine bentonite was compacted to a dry density of 1600 kg/m3 with initial liquid saturation of 35.7% and then installed into a rigid container for swelling pressure experiment. The unsaturated bentonite sample was then flushed with NaCl solutions in different concentrations. With the increase of the ionic strength, the measured swelling pressure decreases. The experimental swelling pressure values agree well with the modelled results using the chemical swelling model.

Key words

geochemistry bentonite swelling pressure experiment model analysis 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Bennethum L, Cushman J (2002) Multicomponent, multiphase thermodynamics of swelling porous media with electroquasistatics II: Constitutive theory, Transport Porous Med 47:337–362CrossRefMathSciNetGoogle Scholar
  2. Bennethum L, Weinstein T (2004) Three pressures in porous media, Transport Porous Med 54:1–34CrossRefMathSciNetGoogle Scholar
  3. Börgesson L (1985) Water flow and swelling pressure in non-saturated bentonitebased clay barriers, Eng Geol 314:229–237CrossRefGoogle Scholar
  4. Chapman D (1913) A contribution to the theory of electrocapillarity, Philosophical Magazine 25:475Google Scholar
  5. Derjaguin B, Landau L (1941) Theory of the stability of strongly charged lyophobic soils and of the adhension of stronghly charged particles in solutions of electrolytes, Acta Physiochem USSR 14:633–662Google Scholar
  6. FEBEX Working groups (2000) Full-scale engineered barriers experiment for a deep geological repository for high level radioactive waste in crystalline host rock. Final reportGoogle Scholar
  7. Gouy G (1910) Sur la constitution de la charge électrique à la surface d´un électrolyte, Journal de Physique 9:457–468Google Scholar
  8. Herbert HJ, Moog HC (2002) Untersuchungen zur Quellung von Bentoniten in hochsalinaren Lösungen. Abschlussbericht, Gesellschaft für Anlagen und Reaktorsicherheit (GRS) mbHGoogle Scholar
  9. Huyghe J, Janssen J (1999) Thermo-chemo-electro-mechanical formulation of saturated charged porous solids, Transport Porous Med 34:129–141CrossRefGoogle Scholar
  10. Iatridis J, Laible J, Krag M (2003) Influence of fixed charge density magnitude and distribution on the intervertebral disc: Applications of a poroelastic and chemical electric PEACE model, J Biomech Eng 125:12–24CrossRefGoogle Scholar
  11. IGS (1998) Recommended descriptions of geosynthetics functions, geosynthetics terminology, mathematical and graphical symbols. Report, International Geosynthetics Society (1998)Google Scholar
  12. Jasmund K, Lagaly G (eds) (1993) Tonminerale und Tone. Strukturen, Eigenschaften, Anwendungen und Einsatz in Industrie und Umwelt. Steinkopff Verlag, Darmstadt, ISBN-3-7985-0923-9Google Scholar
  13. Katti D, Shanmugasundaram V (2001) Influence of swelling on the microstructure of expansive clays, Can Geotech J 38(1):175–182CrossRefGoogle Scholar
  14. Low PF (1979) Nature and properties of water in montomorillonite-water systems, Soil Sci Soc Am J 43:651–658CrossRefGoogle Scholar
  15. Low PF (1987) Structural component of the swelling pressure of clays, Langmuir 3:18–25CrossRefGoogle Scholar
  16. Low PF (1992) Interparticle forces in clay suspensions: Flocculation, viscous flow and swelling. In: Proc 1989 Clay Min Sco Workshop on Rheology of Clay/Water SystemsGoogle Scholar
  17. Mielenz RC, King ME (1955) Physical mechanical properties and engineering performance of clays. California Division of Mines Bulletin, Clays and clay technology: 1st National Conference on Clays and Clay Technology, Berkeley, California 169:196–254Google Scholar
  18. Miller SE, Low PF (1990) Characterization of the electrical double layer of montmorillonite, Langmuir 6:572–578CrossRefGoogle Scholar
  19. Mitchell J (1993) Fundamentals of soil behaviour, 2nd edn. John Wiley & SonsGoogle Scholar
  20. Noorishad J, Ayaollahi MS, Witherspoon P (1982) A finite-element method for coupled stress and fluid flow analysis in fractured rock masses., Int J Rock Mech Min Sci 19:185–193CrossRefGoogle Scholar
  21. Norrish K (1955) Manner of swelling of montmorillonite, Nature 4397:256–257Google Scholar
  22. Quirk J (1997) Application of double-layer theories to the extensive crystalline swelling of Li-Montmorillonite, Langmuir 13:6241–6248CrossRefGoogle Scholar
  23. Seed HB, Woodward RJ, Lundgren R (1962) Prediction of swelling potential for compacted clays, J Soil Mechanics and Foundation Division 88:53–87Google Scholar
  24. Sridharan A (1990) Strength and volume change behaviour of a sand-bentonite mixture, Can Geotech J 27:404Google Scholar
  25. Verwey E, Overbeek J (1948) Theory of the stability of lyophobic colloids. Elsevier, AmsterdamGoogle Scholar
  26. Xie M, Agus S, Schanz T, Kolditz O (2004) An upscaling method and numerical modelling of swelling/shrinking processes in compacted bentonite/sand mixtures, Int J Numer Anal Meth Geomech 28:1479–1502zbMATHCrossRefGoogle Scholar
  27. Xie M, Wang W, Kolditz O (2007) Numerical modelling of swelling pressure in unsaturated expansive elasto-plastic porous media, Transport Porous Med (in print)Google Scholar

Copyright information

© Springer 2007

Authors and Affiliations

  • Mingliang Xie
    • 1
  • Helge C. Moog
    • 2
  • Olaf Kolditz
    • 1
  1. 1.GeoSystemsResearch, Center for Applied GeoscienceUniversity of TübingenTübingenGermany
  2. 2.Gesellschaft für Anlagen- und Reaktorsicherheit mbH (GRS)BraunschweigGermany

Personalised recommendations