Advertisement

Determination of the Soil Water Retention Curve and the Unsaturated Hydraulic Conductivity from the Particle Size Distribution

  • Alexander Scheuermann
  • Andreas Bieberstein
Conference paper
Part of the Springer Proceedings in Physics book series (SPPHY, volume 112)

Summary

Because of the complexity of the metrological determination of the soil water retention curve (SWRC), so-called pedotransfer functions (PTF) have been developed for several years. Mostly these PTF are based on a more or less simple regression analysis using a limited set of data. In such methods the SWRC is predicted with data on the amount of soil components sometimes supplemented by values regarding the density or the amount of organic materials. Only few PTF deal directly with the particle size distribution. In many cases empirical factors are necessary to obtain a prediction for the water retention curve. A new method for determining the soil-hydraulic properties using the pore constriction distribution of a soil has been developed, whereby the pore constriction distribution is derived from the particle size distribution depending on the density of the soil. The contribution will present the new pedotransfer method and shows results in comparison to experimental investigations.

Key Words

pedotransfer method soil water retention curve hydraulic conductivity pore model 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Arya LM, Paris JF (1981) A physicoempirical model to predict the soil moisture characteristic from particle-size distribution and bulk density data, Soil Sci Soc Am J 45: 1023–1030CrossRefGoogle Scholar
  2. Aubertin M, Mbonimpa M, Bussiére, Chapui RP (2003) A model to predict the water retention curve from basic geotechnical properties, Can Geotech J 40: 1104–1122CrossRefGoogle Scholar
  3. Bear J (1972) Dynamics of fluids in porous media, Dover Publications, Inc., New YorkzbMATHGoogle Scholar
  4. Brooks RH, Corey AT (1964) Hydraulic properties of porous media, Hydrology Papers, Colorado State University, Fort Collins, ColoradoGoogle Scholar
  5. Childs EC, Collis-George N (1950) The permeability of porous materials, Proc Roy Soc A 201: 392–405Google Scholar
  6. Fredlund DG, Rahardjo H (1993) Soil mechanics for unsaturated soils, John Wiley & Son, IncGoogle Scholar
  7. Fredlund MD, Wilson GW, Fredlund DG (2002) Use of the grain-size distribution for estimation of the soil-water characteristic curve, Can Geotech J 39: 1103–1117CrossRefGoogle Scholar
  8. Glantz R (1997) Porennetzwerke von Erdstoff-Filtern – Mathematisch-Morphologische Beschreibung kernspintomographischer Aufnahmen. Ph.D Thesis, Mitteilungen der Abteilung Erddammbau und Deponiebau am Institut für Bodenmechanik und Felsmechanik der Universität Karlsruhe, Heft 9Google Scholar
  9. Haverkamp R, Parlange J-Y (1986) Predicting the water retention curve from particle-size distribution: 1. Sandy soils without organic matter, Soil Science 142(6): 325–339CrossRefGoogle Scholar
  10. Kitamura R, Fukuhara S, Uemura K, Kisanuki G, Seyama M (1998) A numerical model for seepage through unsaturated soil, Soils and Foundation 38(4): 261–265Google Scholar
  11. Kitamura R, Seyama M, Abe H (2000) Investigation of seepage behaviour through unsaturated soil, Unsaturated Soils for Asia. Balkema, Rotterdam, pp 405–408Google Scholar
  12. Luckner L, van Genuchten MTh, Nielsen DR (1989) A consistent set of parametric models for the two-phase flow of immiscible fluids in the subsurface, Water Resour Res 25(10): 2187–2193Google Scholar
  13. Mualem Y (1976) Hysteretical models for prediction of the hydraulic conductivity of unsaturated porous media, Water Resour Res 12(6): 1248–1254Google Scholar
  14. Scheuermann A (2005) Instationäre Durchfeuchtung quasi-homogener Deiche, Mitteilungen des Institutes für Bodenmechanik und Felsmechanik der Universität Karlsruhe, Heft 164Google Scholar
  15. Schick P (2002) Die pF-Kurve bindiger Böden bei grossen Wasserspannungen, Bautechnik 79(12): 842–849Google Scholar
  16. Schubert H (1982) Kapillarität in porösen Feststoffsystemen. Springer-Verlag, Berlin, Heidelberg, New YorkGoogle Scholar
  17. Schuler U (1997) Bemessung von Erdstoff-Filtern unter besonderer Berücksichtigung der Parameterstreuung, Mitteilungen des Institutes für Bodenmechanik und Felsmechanik der Universität Karlsruhe, Heft 143Google Scholar
  18. Schulze B (1992) Injektionssohlen – Theoretische und experimentelle Untersuchungen zur Erhöhung der Zuverlässigkeit, Mitteilungen des Institutes für Bodenmechanik und Felsmechanik der Universität Karlsruhe, Heft 126Google Scholar
  19. Silveira A (1965) An analysis of the problem of washing through in protective filters. In: Proc 6th Int Conf on SMFE, MontrealGoogle Scholar
  20. van Genuchten (1980) A closed-form equation for predicting the hydraulic conductivity of unsaturated soils, Soil Sci Soc Am J 44: 892–898CrossRefGoogle Scholar
  21. Vasconcelos WL (1998) Connectivity in sol-gel silica glasses, Quimica Nova 21(4): 514–516Google Scholar
  22. Vogel HJ, Roth K (1998) A new approach for determining effective soil hydraulic functions, Eur J Soil Sci 49: 547–556CrossRefGoogle Scholar
  23. Witt KJ (1986) Filtrationsverhalten und Bemessung von Erdstoff-Filtern, Mitteilungen des Institutes für Bodenmechanik und Felsmechanik der Universität Karlsruhe, Heft 104Google Scholar
  24. Wittmann L (1980) Filtrations- und Transportphänomene in porösen Medien, Mitteilungen des Institutes für Bodenmechanik und Felsmechanik der Universität Karlsruhe, Heft 86Google Scholar
  25. Ziems J (1969) Beitrag zur Kontakterosion nichtbindiger Erdstoffe, Dissertation an der Technischen Universität DresdenGoogle Scholar
  26. Zou Y (2003) Ein physikalisches Modell der pF-Kurve für teilgesaittigte grobkörnige Böden, Bautechnik 80(12): 913–921Google Scholar
  27. Zou Y (2004) Ein erweitertes physikalisches Modell der pF-Kurve für teilgesättigte grobkörnige Böden auf primäre Entwässerung und skundäre Be- und Entwässerung, Bautechnik 81(5): 371–378CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2007

Authors and Affiliations

  • Alexander Scheuermann
    • 1
  • Andreas Bieberstein
    • 1
  1. 1.Institute of Soil Mechanics and Rock Mechanics, Division of Embankment Dams and Landfill TechnologyUniversity of Karlsruhe (TU)Germany

Personalised recommendations