Advertisement

Influence of Temperature on the Water Retention Curve of Soils. Modelling and Experiments

  • Simon Salager
  • Moulay Saïd El Youssoufi
  • Christian Saix
Part of the Springer Proceedings in Physics book series (SPPHY, volume 112)

Summary

We investigate the influence of temperature on the retention curve of soils. This curve represents the constitutive relation between water content w and suction s, for a given temperature T and a given void ratio e. We present a model based on the differential of suction as a function of T, w and e. When adjusted for a retention curve obtained at a given temperature, this model enables to predict this curve for any temperature. In parallel, we carried out experiments on a clayey silty sand by using a pressure cell immersed in a thermostatic bath. The model was validated by several tests on the clayey silty sand at 20 and 60˚ C. The application of the model to data found in the literature confirms its predictive power for a wide range of porous materials. These results allow us to plot the retention surface, from experimental tests obtained at a given temperature and from modelling. It can be considered as a generalization of the classical retention curve. Finally, we discuss the influence of the void ratio variation during experiments on the curve predicted by the model.

Key Words

retention curve thermo-hydric behaviour pressure cell soil porous media 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bachmann J, Van Der Ploeg RR (2002) Soil Sci 165: 468–478Google Scholar
  2. Fredlund DG, Xing A (1994) Can Geotech J 31: 521–53Google Scholar
  3. Fredlund DG, Xing A, Huang S (1994) Can Geotech J 31: 533–545Google Scholar
  4. Fredlund DG, Xing A, Fredlund MD, Barbour SL (1995) Can Geotech J 32: 440–448CrossRefGoogle Scholar
  5. Imbert C, Olchitzky E, Lassabatére T, Dangla P, Courtois A (2005) Engineering Geology 81: 269–283CrossRefGoogle Scholar
  6. Jamin F (2003) Contribution à l’étude du transport de matiére et de la rhéologie dans les sols non saturés à différentes températures. PhD Thesis, Université Montpellier 2, MontpellierGoogle Scholar
  7. Laloui L, Moreni M, Vulliet L (2003) Can Geotech J 40: 388–402CrossRefGoogle Scholar
  8. Olchitzky E (2002) Couplage hydromécanique et perméabilité d’une argile gonflante non saturé sous sollicitations hydriques et thermiques. PhD Thesis, Ecole Nationale des Ponts et Chaussés, ParisGoogle Scholar
  9. Romero E, Gens A, Lloret A (2001) Geotechnical and Geological Engineering 19:311–332CrossRefGoogle Scholar
  10. Saix C (1987) Contribution à l’étude des sols non saturés en température. Application à l’exploitation thermique des sous-sols. PhD Thesis, Université Montpellier 2, MontpellierGoogle Scholar
  11. Van Genuchten MT (1980) Soil Sci Soc Am J 44: 892–898CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2007

Authors and Affiliations

  • Simon Salager
    • 1
  • Moulay Saïd El Youssoufi
    • 1
  • Christian Saix
    • 1
  1. 1.LMGC UMR CNRS 5508Université MontpellierMonpellier Cedex 5France

Personalised recommendations