Skip to main content

Optimization of the Phenomenological Constitutive Models Parameters Using Genetic Algorithms

  • Chapter
Advanced Methods in Material Forming

Summary

The lack of accuracy of numerical results is still nowadays one of the main drawbacks of sheet metal forming process simulation. One of the main reasons for such a lack of accuracy is the constitutive models used to describe the real material’s mechanical behavior. The most widely used phenomenological constitutive model is based on the classical Hill 1948 yield criterion. In the last decade several new yield criteria have been proposed, with the constraint that a parameter identification procedure has not always been clearly set. This study presents a general approach to optimize anisotropic plastic description. A weight-based optimization procedure is presented in order to perform the optimization of several constitutive models based on experimental results. Using this procedure is expected to improve the plastic description with a global optimum solution.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Barlat F., Lege D.J., Brem J.C., “A six-component yield function for anisotropic materials”, International Journal of Plasticity, Vol. 7, 1991, p. 693–712.

    Article  Google Scholar 

  • Bron F., Besson J.A., “Yield function for anisotropic materials: Aplication to aluminium alloys”, International Journal of Plasticity, Vol. 20, 2004, p. 937–963.

    Article  MATH  Google Scholar 

  • Banabic D., Cazacu O., Barlat F., Comsa D.S., Wagner S., Siegert K., “Description of anisotropic behaviour of AA3103-O aluminium alloy using two recent yield criteria”, Proceedings of 6th European Mechanics of Materials Conference, Ed. S. Cescotto, 2002, p. 265–272.

    Google Scholar 

  • Banabic D., Arets H., Comsa D.S., Paraianu L., “An improved analytical description of orthotropy in metallic sheets”, International Journal of Plasticity, Vol. 21, 2005, p. 493–512.

    Article  MATH  Google Scholar 

  • Back T., Evolutionary algorithms in theory and in practice: evolutionary strategies evolutionary programming, genetic algorithms, Oxford University Press, 1996.

    Google Scholar 

  • Bouvier S., Teodosiu C., ”Selection and identification of elastoplastic models for the materials used in the benchmarks”, Project Digital Die Design (3DS) Progress Report, Laboratoire des Propriétés Mécaniques et Thermodynamiques des Matériaux (LPMTM) – CNRS, University of Paris Nord, France, 2001.

    Google Scholar 

  • Cazacu O., Barlat F., “Generalization of Drucker’s yield criterion to orthotropy”, Mathematics and Physics of Solids, Vol. 6, 2001, p. 613–630.

    Article  MATH  Google Scholar 

  • Cazacu O., Barlat F., “A criterion for description of anisotropy yield differential effects in pressure-insensitive metals”, International Journal of Plasticity, Vol. 20, 2004, p. 2047–2045.

    Article  Google Scholar 

  • Chaparro B.M., Oliveira M.C., Alves J.L., Menezes L.F., “Work hardening models and the numerical simulation of the deep drawing process”, Materials Science Forum, Vols. 455–456, 2004, p. 717–722.

    Article  Google Scholar 

  • Drucker D.C., “Relation of experiments to mathematical theories of plasticity”, Journal of Applied Mechanics, Vol. 16, 1949, p. 349–357.

    MATH  MathSciNet  Google Scholar 

  • De Jong K. A., “On using genetic algorithm to search program spaces”, Proceeding of 2nd International Conference on Genetic algorithm and Their Applications, Hillsdale, Ed. Lawrence Erlbaum, 1987, p. 210–216.

    Google Scholar 

  • looseness-1Davis L. D., The handbook of genetic algorithms, Van Nostrand Reinhold, 1991.

    Google Scholar 

  • Feng, X.T., Yang, C., “Coupling recognition of the structure and parameters of non-linear constitutive material models using hybrid evolutionary algorithms”, International Journal for Numerical Methods in Engineering, Vol. 59, 2004, p. 1227–1250.

    Article  MATH  Google Scholar 

  • Furukawa T., Yagawa G., “Parameter identification of inelastic constitutive equations using an evolutionary algorithm with constitutive individuals”, Proceedings ASME/JSME PVPC Conference, Vol. 305, 1995, p. 437–444.

    Google Scholar 

  • Furukawa T., Sugata T., Yoshimura S., Hoffman M., “An automated system for simulation and parameter identification of inelastic constitutive models”, Computer Methods in Applied Mechanics and Engineering, Vol. 191, 2002,. p2235–2260.

    Article  MATH  Google Scholar 

  • Grefenstette J.J., “Optimization of control parameters for genetic algorithms”, IEEE Transactions, Vol. SMC-16, 1986, p. 122–128.

    Google Scholar 

  • Goldberg D. E., Genetic algorithms in search, optimization and machine learning, Addison-Wesley, 1989.

    Google Scholar 

  • Hill R., “A theory of the yielding and plastic flow of anisotropic metals”, Proceedings of Mathematical, Physical and Engineering Science, Royal Society London, Vol. A193, 1948, p. 281–297.

    Google Scholar 

  • Hill R., The mathematical theory of plasticity, Oxford, Clarendon Press, 1950.

    MATH  Google Scholar 

  • Hersey A.V., “The plasticity of an isotropic aggregate face centered cubic crystals”, Journal of Applied Mechanical Transactions ASME, Vol. 21, 1954, p. 241–249.

    Google Scholar 

  • Hosford W.F., “A generalized isotropic yield criterion”, Journal of Applied Mechanics, Vol. 39, 1972, p. 607–609.

    Google Scholar 

  • Holland J.H., Adaptation in neural and artificial systems, Ann Arbor, University of Michigan Press, 1975.

    Google Scholar 

  • Karafillis A.P., Boyce M.C., “A general anisotropic yield criterion using bounds and a transformation weighting tensor”, Journal of the Mechanics of Physics of Solids, Vol. 41, 1993, p. 1859–1886.

    Article  MATH  Google Scholar 

  • Koza J. R., Genetic programming: on the programming of computers by means of natural selection, MIT press, 1992.

    Google Scholar 

  • Logan R.W., aHosford W.F., “Upper-bound anisotropic yield locus calculations assuming (111)-pencil glide”, International Journal of Mechanical Sciences, Vol. 22, 1980, p. 419–430.

    Article  Google Scholar 

  • Menezes L.F., Teodosiu C., “Thee-dimensional numerical simulation of deep-drawing process using solid finite elements”, Journal of Material Processing Technology, Vol. 97, 2000, p. 100–106.

    Article  Google Scholar 

  • Mises R., “Mechanik der festen korper im plastic-deformablen zustand“, Nachrichten vos der koniglichen gellesschaft des winssenschaften zu Gottingen, Mathematisch-physikalische klasse, 1913, p. 582–592.

    Google Scholar 

  • Pal S., Wathugala G.W., Kundu S., “Calibration of a constitutive model using genetic algorithms”, Computer and Geotechnics, Vol. 19, 1996, p. 325–348.

    Article  Google Scholar 

  • Powel M.J.D., “An efficient method for finding the minimum of a function of several variables without calculating derivatives”, Computational Journal, Vol. 7, 1964, p. 155–162.

    Article  Google Scholar 

  • Swift H.W., “Plastic instability under plane stress”, Journal of the Mechanics of Physics of Solids, Vol. 1, 1952, p. 1–18.

    Article  Google Scholar 

  • Thuiller S., Manach P.Y., Menezes L.F., Oliveira M.C., “Experimental and numerical study of reverse re-drawing of anisotropic sheet metals”, Journal of Materials Processing Technology, Vol. 125–126, 2002, p. 764–771.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Chaparro, B., Alves, J., Menezes, L., Fernandes, J. (2007). Optimization of the Phenomenological Constitutive Models Parameters Using Genetic Algorithms. In: Advanced Methods in Material Forming. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-69845-0_3

Download citation

  • DOI: https://doi.org/10.1007/3-540-69845-0_3

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-69844-9

  • Online ISBN: 978-3-540-69845-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics