Summary
This paper reviews aspects of the plastic behavior common in metals and alloys. Macroscopic and microscopic phenomena occurring during plastic deformation are described succinctly. Constitutive models of plasticity at the micro- and macro-scales, suitable for applications to forming, are discussed in a very broad fashion. Approaches to plastic anisotropy are reviewed in a more detailed manner.
Key words
- alloy
- anisotropy
- constitutive model
- forming
- metal
- micro- structure
- plasticity
This is a preview of subscription content, access via your institution.
Buying options
Preview
Unable to display preview. Download preview PDF.
References
Altenpohl D.G., Aluminum: Technology, Applications and Environment, Warrendale, PA, TMS, 1998.
Barlat F., Aretz H., Yoon J.W., Karabin M.E., Brem J.C., Dick R.E., “Linear transformation-based anisotropic yield functions”, Int. J. Plasticity, vol. 21, 2005, p. 1009–1039.
Barlat F., Cazacu O., Życzowski M., Banabic D., Yoon J.W., “Yield surface plasticity and anisotropy”, Continuum Scale Simulation of Engineering Materials – Fundamentals – Microstructures – Process Applications, Raabe D., Roters F., Barlat F., Chen L.-Q., (eds.), Berlin, Wiley-VCH Verlag GmbH, 2004, p. 145–177.
Barlat F., Liu J., “Modeling precipitate-induced anisotropy in binary Al-Cu alloys”, Mat. Sci. Eng., vol. A257, 1998, p. 47–61.
Bate P., Roberts W.T., Wilson D.V., “The plastic anisotropy of two-phase aluminum alloys – I. Anisotropy in unidirectional deformation”, Acta Metall., vol. 29, 1981, p. 1797–1814.
Bishop J.W.F., Hill R., “A theory of the plastic distortion of a polycrystalline aggregate under combined stresses”, Phil. Mag., vol. 42, 1951, p. 414–427.
Boehler J.P., ≪ Lois de Comportement anisotropes des milieux continus ≫ , J. Mécanique, vol. 17, 1978, p. 153–190.
Bulatov V.V., Richmond O., Glazov M.V., “An atomistic dislocation mechanism of pressure-dependent plastic flow in aluminium”, Acta Materialia, vol. 47, 1999, p. 3507–3514.
Cazacu O., Barlat F., “A criterion for description of anisotropy and yield differential effects in pressure-insensitive metals”, Int. J. Plasticity, vol. 20, 2004, p. 2027–2045.
Cazacu O., Barlat F., “Application of the theory of representation to describe yielding of anisotropic aluminum alloys”, Int. J. Eng. Sci., vol. 41, 2003, p. 1367–1385.
Cazacu O., Plunkett B., Barlat F., “Orthotropic yield criterion for Mg alloy sheets”, Proceedings of the 8th Conference of the European Scientific Association for Material Forming, Cluj-Napoca, Romania, April 27–29, 2005, Banabic, D., (ed.), Bucharest, The Publishing House of the Romanian Academy, p. 3–10.
Chien W.Y, Pan J., Tang S.C., “A combined necking and shear localization analysis for aluminum alloys sheets under biaxial stretching conditions”, Int. J. Plasticity, vol. 20, 2004, p. 1953–1981.
Dafalias Y.F., Popov E.P., “A model of nonlinearly hardening materials for complex loading”, Acta Mechanica, vol. 21, 1975, p. 173–192.
Drucker D.C., Prager W., “Soil mechanics and plastic analysis or limit design”, Quart. Appl. Math., vol. 10, 1952, p. 157–165.
Eshelby J.D., “The determination of the elastic field of an ellipsoidal inclusion and related problems”, Proc. Roy. Soc. London, vol. A241, 1957, p. 376–396.
Estrin Y, “Dislocation density-related constitutive modeling”, Unified Constitutive Law of Plastic Deformation, Krausz A.S., Krausz K. (eds.), Academic Press, San Diego, CA, 1996, p. 69–106.
Gambin W., Plasticity and Texture, Amsterdam, Kluwer Academic Publishers, 2001.
aGurson A.L., “Continuum theory of ductile fracture by void nucleation and growth – Part I: Yield criteria and flow rules for porous ductile media”, ASME J. Eng. Materials and Technology, vol. 99, 1977, p. 2–15.
Hashiguchi K., “Generalized Plastic Flow Rule”, Int. J. Plasticity, vol. 21, 2005, p. 321–351.
Hecker S.S., “Experimental studies of yield phenomena in biaxially loaded metals”, Constitutive Modelling in Viscoplasticity, Stricklin A., Saczalski K.C. (eds.), ASME, New-York, ASME, 1976, p. 1–33.
Hershey A.V., “The plasticity of an isotropic aggregate of anisotropic face centred cubic crystals”, J. Appl. Mech., vol. 21, 1954, p. 241–249.
Hoh K.C., Lin J., Dean T.A., “Modeling of springback in creep forming thick aluminum sheets”, Int. J. Plasticity, vol. 20, 2004, p. 733–751.
Hosford W.F., Caddell R.M., Metal Forming-Mechanics and Metallurgy, Englewood Cliffs, NJ, Prentice-Hall, Inc., 1983.
Hosford W.F., The Mechanics of Crystals and Polycrystals, Oxford, Science Publications, 1993.
Jung J., “A note on the influence of hydrostatic pressure on dislocations”, Philos. Mag. A, vol. 43, 1981, p. 1057–1061.
Kalidindi S.R., “Modeling anisotropic strain hardening and deformation textures in low stacking fault energy fcc metals”, Int. J. Plasticity, vol. 17, 2001, p. 837–860.
Kassner M.E., Hayes T.A., “Creep cavitation in metal”, Int. J. Plasticity, vol. 19, 2003, p. 1715–1864.
Kelley E.W., Hosford W.F., “Deformation characteristics of textured magnesium”, Trans. TMS-AIME, vol. 242, 1968, p. 654–661.
Khaleel M.A., Zbib H.M., Nyberg E.A., “Constitutive modeling of deformation and damage in superplastic materials”, Int. J. Plasticity, vol. 17, 2001, p. 277–296.
Kocks U.F., Tomé C.N., Wenk H.-R., Texture and Anisotropy, Cambridge, University Press, 1998.
Korbel A., “Structural and mechanical aspects of homogeneous and non-homogeneous deformation in solids”, Localization and Fracture Phenomena in Inelastic Solids, P. Perzyna P. (ed.), Wien, Springer-Verlag, 1998, p. 21–98.
Krausz A.S., Krausz K., “The constitutive law of deformation kinetics”, Unified Constitutive Laws of Plastic Deformation, San Diego, CA, Academic Press, (1996), p. 229–279.
Krempl E., “A small-strain viscoplasticity theory based on overstress“, Unified Constitutive Laws of Plastic Deformation, Krausz A.S., Krausz K. (eds.), San Diego, CA, Academic Press, (1996), p. 281–318.
Kubin L.P., Estrin Y., “Evolution for dislocation densities and the critical conditions for the Portevin-Le Chatelier effect”, Acta Metall. Mater., vol. 38, 1990, p. 697–708.
Leblond J.-B., Mécanique de la rupture fragile et ductile, Paris, Lavoisier, 2003.
Lemaitre J. (ed.), Handbook of Materials Behaviour Models, San Diego, Academic Press, San Diego, 2001.
Lemaitre J., Chaboche J.-L., Mechanics of Solid Materials, Cambridge, University Press, 1990.
Perocheau F., Driver J., “Slip systems rheology of Al-1 % Mn crystals deformed by hot plane strain compression”, Int. J. Plasticity, vol. 18, 2002, p. 185–203.
Raabe D., Roters F., Barlat F., Chen L.Q. (eds.), Continuum Scale Simulations of Engineering Materials – Fundamentals – Microstructures – Process Applications, Berlin, Wiley-VCH Verlag GmbH, 2004.
Richmond O. and Spitzig W.A., “Pressure dependence and dilatancy of plastic flow”, IUTAM Conference, Theoretical and Applied Mechanics, Proc. 15mathrm th International Congress of Theoretical and Applied Mechanics, Amsterdam, North-Holland Publishers, 1980, p. 377–386.
Rizzi E., Hähner P., “On the Portevin-Le Chatelier effect: Theoretical modeling and numerical results”, Int. J. Plasticity, vol. 20, 2004, p. 121–165.
Siruguet K., Leblond J.-B., “Effect of void locking by inclusions upon the plastic behavior of porous ductile solids – I: Theoretical modeling and numerical study of void growth”, Int. J. Plasticity, vol. 20, 2004a, p. 225–254.
Siruguet K., Leblond J.-B., “Effect of void locking by inclusions upon the plastic behavior of porous ductile solids – part II: Theoretical modeling and numerical study of void coalescence”, Int. J. Plasticity, vol. 20, 2004b, p. 255–268.
Spitzig W.A, “Effect of hydrostatic pressure on plastic flow properties of iron single crystal”, Acta Metall., vol. 27, 1979, p. 523–534.
Spitzig W.A, Sober R.J., Richmond O., “The effect of hydrostatic pressure on the deformation behavior of Maraging and HY-80 steels and its implication for plasticity theory”, Metall. Trans., vol. 7A, 1976, p. 1703–1710.
Spitzig, W.A., Richmond, O., “The effect of pressure on the flow stress of metals”, Acta Metal., vol. 32, 1984, p. 457–463.
Staroselski A., Anand L., “A constitutive model for hcp materials deforming by twinning: Application to magnesium alloy AZ31B”, Int. J. Plasticity, vol. 19, 2003, p. 1843–1864.
Taleh L., Sidoroff F., “A micromechanical model of the Greenwood-Johnson mechanism in transformation induced plasticity”, Int. J. Plasticity, vol. 19, 2003, p. 1821–1842.
Wilson D.V., “Reversible work-hardening in alloys of cubic metals”, Acta Metall. vol. 13, 1965, 807–814.
Zhou Z.-D., Zhao S.-X., Kuang Z.-B., “An integral elasto-plastic constitutive theory”, Int. J. Plasticity, vol. 19, 2003, p. 1377–1400. t
Author information
Authors and Affiliations
Rights and permissions
Copyright information
© 2007 Springer-Verlag Berlin Heidelberg
About this chapter
Cite this chapter
Barlat, F. (2007). Constitutive Modeling for Metals. In: Advanced Methods in Material Forming. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-69845-0_1
Download citation
DOI: https://doi.org/10.1007/3-540-69845-0_1
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-69844-9
Online ISBN: 978-3-540-69845-6
eBook Packages: EngineeringEngineering (R0)