Skip to main content

Friction Pressure Drop

  • Chapter
Multiphase Flow Dynamics 2

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 199.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Avdeev AA (1982) Teploenergetika vol 3 p 23

    Google Scholar 

  • Avdeev AA (1983a) Gidrodynamika turbulentnyih techeniy puzyrkovoj dwuchfasnoj smesi, Teplofisika visokih temperature, vol 21 no 4 pp 707-715

    Google Scholar 

  • Avdeev AA (1983b) Hydrodynamics of turbulent bubble two phase mixture, High Temperature Physic, vol 21 no 4 pp 707-715, in Russian

    Google Scholar 

  • Avdeev AA (1986) Application of the Reynolds analogy to the investigation of the surface boiling in forced convection, High Temperature Physics, vol 24 no 1 pp 111 - 119, in Russian.

    Google Scholar 

  • Böttenbach H (1975) Strömungswiderstand von quer- und längstangeströmten Stabbündeln, Atomkernenergie vol 26 no 4 pp 229-234

    Google Scholar 

  • Caraghiaur D, Frid W, Tillmark N (October 4-8, 2004) Detailed pressure drop measurements in single and two phase adiabatic air-water turbulent flows in realistic BWR fuel assembly geometry with spacer grids, The 6th International Conference on Nuclear Thermal Hydraulics, Operations and Safety (NUTHOS-6) Nara, Japan, Paper ID N6P207

    Google Scholar 

  • Cheng SK and Todreas NE (1986) Hydrodynamic models and correlations for bare and wire-wrapped hexagonal rod bundles – bundle friction factors, subchannel friction factors and mixing parameters, Nucl. Eng. Design vol 92 pp 227-251

    Article  Google Scholar 

  • Chisholm D (1983) Two-phase flow in pipelines and heat exchanger, George Godwin, London and New York, p 110

    Google Scholar 

  • Colebrook CF (1939) Turbulent flow in pipes with particular reference to the transition region between the smooth and the rough pipe lows, J. Institution Civil Engineers

    Google Scholar 

  • Dwyer OE et al. (Oct. 1956) Cross flow of water trough a tube bank at Reynolds numbers up to a million, Industrial and Engineering Chemistry, vol 48 no 10 pp 1836-1846

    Article  Google Scholar 

  • Friedel L (1979a) Improved friction pressure drop correlation for horizontal and vertical two-phase flow, 3R international, vol 18 no 7 pp 485-491 or in European two-phase flow meeting, Ispra

    Google Scholar 

  • Friedel L (1979b) New friction pressure drop correlations for upward, horizontal, and downward two - phase pipe flow. Presented at the HTFS Symposium, Oxford, September 1979 (Hoechst AG Reference No. 372217/24 698)

    Google Scholar 

  • Friedel L (1980) Pressure drop during gas/vapour-liquid flow in pipes, Int. Chemical Engineering, vol 20 pp 352-367

    Google Scholar 

  • Gaddis ES and Gnielinski V (Jan. 1985) Pressure drop in cross flow across tube bundles, International Chemical Engineering, vol 25 no 1 pp 115

    Google Scholar 

  • Gunter A Y, Shaw WA (1945) A general correlation of friction factors for various types of surfaces in cross flow, ASME Trans., vol 57 pp 643-660

    Google Scholar 

  • Haland SE (1983) Simple and explicit formulas for the friction factor in turbulent pipe flow, J. Fluids Eng., vol 98 pp 173-181

    Google Scholar 

  • Hartnett, JP et al. (1962) Trans. ASME, Ser. C, vol 84-1, pp 82

    Google Scholar 

  • Hetstroni G (1982) Handbook of multiphase systems. Hemishere Publ. Corp., Washington etc., McGraw-Hill Book Company, New York etc.

    Google Scholar 

  • Idelchik IE (1975) Handbook of hydraulic resistance, Second edition, Hemisphere, Washington, 1986, translation o a Russian edition

    Google Scholar 

  • Idelchik IE (1996) Handbook of hydraulic resistance, 3rd Edition, Begell House, Inc. p. 219

    Google Scholar 

  • Kirilov PL, Yur’ev YuS an Bobkov VP (1990) Handbook of thermal-hydraulic calculations, in Russian, Energoatomizdat, Moscow, Russia, pp 130-132

    Google Scholar 

  • Lestinen V and Gang P (Oct. 3-8, 1999) Experimental and numerical studies of the flow field characteristics of VVER-440 fuel assembly, Ninth Int. Top. Meeting on Nuclear Thermal Hydraulics, NURETH-9, San Francisco, California

    Google Scholar 

  • Leung LKH and Hotte G (September 7-9, 1997) A generalized prediction method for single-phase pressure drop in a string of aligned CANDU-type bundles, Proc. 20th CNS Simulation Symp., Niagara-on-the-Lake

    Google Scholar 

  • Lockhart RW, Martinelli RC (1949) Proposed correlation of data for isothermal two- phase, two- component flow in pipes, Chem. Eng. Prog., vol 45 no 1 pp 39-48

    Google Scholar 

  • Martinelli RC, Nelson DB (1948) Prediction of pressure drop during forced circulation boiling of water, Trans. ASME, vol 70, p 695

    Google Scholar 

  • Maubach K (1970) Reibungsgesetze turbulenter Strömungen, Chemie-Ing. Technik vol 42 no 15 pp 995-1004

    Article  Google Scholar 

  • Minagawa H (1990) Pressure drop for liquid - gas - solid - slug flow, Kobe University, private communication

    Google Scholar 

  • Nigmatulin BI (1982) Heat and mass transfer and force interactions in annular - dispersed two - phase flow, 7th Int. Heat Transfer Conf., Munich, pp 337-342

    Google Scholar 

  • Nikuradse J (1932) Gesetzmässigkeiten der turbulenten Strömung in glatten Rohren, Forsch.-Arb.-Ing.-Wesen, VDI_Forschungsheft no 336

    Google Scholar 

  • Ransom VH et al. (1988) RELAP5/MOD2 Code Manual Volume 1: Code Structure, System Models, and Solution Methods, NUREG/CR-4312 EGG-2396, rev 1, pp 209-216

    Google Scholar 

  • Rehme K (1968) Widerstandsbeiwert des Na-2 Abstandshalters GfK/PSB-Notiz Nr. 208/68

    Google Scholar 

  • Rehme K (1971) Laminar strömung in stabbundeln, Chemie-Ing-Tech, vol 43 pp 962-966

    Article  Google Scholar 

  • Rehme K (1972a) Pressure drop correlations for fuel element spacers, Nuclear Technology, vol 17 pp 15-23

    Google Scholar 

  • Rehme K (1972b) Pressure drop performance of rod bundles in hexagonal arrangements, Int. J Heat Mass Transfer, vol 15 pp 2499-2517

    Article  Google Scholar 

  • Rehme K (1973) Simple method of predicting friction factors of turbulent flow in non-circular channels, Int. J. Heat and Mass Transfer, vol 16 pp 933-950

    Article  Google Scholar 

  • Rehme K (1977) Pressure drop of spacer grids in smooth and roughened rod bundles. Nuclear Technology, vol 31 pp 314-317

    Google Scholar 

  • Rehme K (1978) The structure of turbulent flow trough a wall subchannel of rods bundle, Nucl. Eng. and Design, vol 45 pp 311-323

    Article  Google Scholar 

  • Sakagushi T, Minagawa H, Tomyama A, Shakutsui H (1989) Characteristics of pressure drop for liquid - solid two - phase flow in vertical pipes, Reprint from Memories of the faculty of engineering, Kobe University, no 36 pp 63-90

    Google Scholar 

  • Staengel G, Mayinger F (March 23-24, 1989) Void fraction and pressure drop in subcooled forced convective boiling with refrigerant 12, Proc. of 7th Eurotherm Seminar Thermal Non-Equilibrium in Two-Phase Flow, Roma, pp 83-97

    Google Scholar 

  • Subbotin VI et al. (1975) Hydrodynamic and heat exchange in nuclear energy facilities, Moskva, Atomisdat (in Russian)

    Google Scholar 

  • Tomyama A, Sakagushi T, Minagawa H (1990) Kobe University, private comunication

    Google Scholar 

  • Unal C et al. (1994) Pressure drop at rod-bundle spacers in the post-CHF dispersed flow, Int. J. Multiphase Flow, vol 20 no.3 pp 512-522.

    Article  MathSciNet  Google Scholar 

  • Voj P and Scholven K (Juni 1974) Druckverlustmessungen and Abstandshaltergittern für SNR-300-Brennelement, Techischer Bericht ITB 74.34

    Google Scholar 

  • Wilkie D (Aug. 1980) Effect of dimensional variation of the effective friction factor of pin-cluster fuel ellemnts, Nucl. Energy, no 4 pp 283-289

    Google Scholar 

  • Yano T and Aritomi M(October 4-8, 2004) Local pressure drops for a ring-type spacer in vertical annular channel, The 6th International Conference on Nuclear Thermal Hydraulics, Operations and Safety (NUTHOS-6), Nara, Japan,. Paper ID. N6P033

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag

About this chapter

Cite this chapter

Kolev, N.I. (2007). Friction Pressure Drop. In: Multiphase Flow Dynamics 2. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-69835-3_3

Download citation

  • DOI: https://doi.org/10.1007/3-540-69835-3_3

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-69834-0

  • Online ISBN: 978-3-540-69835-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics