Skip to main content

Bubble Departure Diameter

  • Chapter
Multiphase Flow Dynamics 2

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 199.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Avdeev AA (1986) Growth and condensation velocity of steam bubbles in turbulent flow, Teploenergetika, in Russian, vol 1 pp 53 – 55

    Google Scholar 

  • Borishanskii V, Bobrovich G, Minchenko F (1961) Heat transfer from a tube to water and to ethanol in nucleate pool boiling, Symposium of Heat Transfer and Hydraulics in Two-Phase Media, Kutateladze SS (ed) Gosenergoizdat, Moscow

    Google Scholar 

  • Cole R, Rohsenow WM (1969) Correlation of bubble departure diameters for boiling of saturated liquids, Chem. Eng. Prog. Symp. Ser., vol 65 no 92 pp 211-213

    Google Scholar 

  • Cornwell K, Brown RD (1978) Boiling surface topology, Proc. 6th Int. Heat Transfer Conf., Toronto, vol 1 pp 157-161

    Google Scholar 

  • Forschuetz L, Chao BT (May 1965) On the mechanics of vapor bubble collapse, Transactions of the ASME, Journal of Heat Transfer, pp 209-220

    Google Scholar 

  • Fritz W (1935) Berechnung des maximalen Volumens von Dampfblasen, Phys. Z., vol 36 no 11 pp 379-384.

    Google Scholar 

  • Gaertner RF (1963) Distribution of active sites in the nucleate boiling of liquids, Chem. Eng. Prog. Symp. Series, no 41 vol 59 pp 52-61

    Google Scholar 

  • Gaertner RF (Feb. 1965) Photographic study of nucleate pool boiling on a horizontal surface, Transaction of the ASME, Journal of Heat Transfer, pp 17- 29

    Google Scholar 

  • Gaertner RF, Westwater JW (1960) Population of active sites in nucleate boiling heat transfer, Chem. Eng. Progr. Symp. Ser, vol 30 pp 39-48

    Google Scholar 

  • Golobic I, Petkovsek J, Baselj M, Papez A and Kenning DBR (7-12 May 2006) Experimental determination of the transient wall temperature distribution close to growing vapor bubbles, ECI International Conference on Boiling Heat Transfer Spoleto

    Google Scholar 

  • Golorin VS, Kol’chugin BA, and Zakharova EA (1978) Investigation of the mechanism of nucleate boiling of ethyl alcohol and benzene by means of high-speed motion-picture photography, Heat Transfer-Sov. Res., vol 10 no 4 pp 79-98

    Google Scholar 

  • Hsu YY, Graham RW (1976) Transport processes in boiling and two - phase systems, Hemisphere Publishing Corporation, Washington - London, Mc Graw - Hill Book Company, New York

    Google Scholar 

  • Iida Y, Kobayasi K (1970) An experimental investigation on the mechanism of pool boiling phenomena by a probe method, 4th Int. Heat Transfer Conf., Paris – Versailles, vol 5 no 3 B13 pp 1-11

    Google Scholar 

  • Ishii M, Zuber N (1978) Relative motion, interfacial drag coefficients in dispersed two - phase flow of bubbles, drops and particles, Paper 56a, AIChE 71st Ann. Meeting, Miami

    Google Scholar 

  • Jakob M (1932) Kondensation und Verdampfung, Zeitschrift des Vereins deutscher Ingenieure, vol 76 no 48 pp 1161-1170

    Google Scholar 

  • Jakob M, Fritz W (1931) Forsch. Ing.-Wes., vol 2 p 435

    Article  Google Scholar 

  • Jakob M, Linke W (1933) Der Waermeuebergang von einer waagerechten Platte an siedendes Wasser, Forsch. Ing. Wes., vol 4 pp 75-81

    Google Scholar 

  • Jensen MK and Memmnel GJ (1986) Evaluation of Bubble Departure Diameter Correlations, Proc. Eighth Int. Heat Transf: Conf., vol 4 pp 1907-1912

    Google Scholar 

  • Jones OC (1992) Nonequilibrium phase change –1. Flashing inception, critical flow, and void development in ducts, in Lahey RT Jr (ed) Boiling Heat Transfer, Elsevier Science Publishers B.V., pp 189 - 234

    Google Scholar 

  • Jones OC (1992) Nonequilibrium Phase Change –2. Relaxation models, general applications, and post heat transfer, in Lahey RT Jr (ed) Boiling Heat Transfer, Elsevier Science Publishers B.V., pp 447-482

    Google Scholar 

  • Klausner JF, Mei R, Bernard DM, Zeng LZ (1993) Vapor bubble departure in forced convection boiling, Int. J. of Heat and Mass Transfer, vol 36 no 3 pp 651-662

    Article  Google Scholar 

  • Kocamustafaogullari G, Ishii M (1983) Interfacial area and nucleation site density in boiling systems, Int. J. Heat Mass Transfer, vol 26 no 9 pp 1377-1389

    Article  Google Scholar 

  • Kolev NI (1993) The code IVA3 for modeling of transient three-phase flows in complicated 3D geometry, Kerntechnik, vol 58 no 3 pp 147-156

    Google Scholar 

  • Kolev NI (1993) Fragmentation and coalescence dynamics in multi-phase flows, Experimental Thermal and Fluid Science, Elsevier, vol 6 pp 211-251

    Google Scholar 

  • Kolev NI (1994) The influence of mutual bubble interaction on the bubble departure diameter, Experimental Thermal and Fluid Science, Elsevier, vol 8 pp 167-174

    Google Scholar 

  • Kolev NI (October 5-8 1993) IVA3 NW: Computer code for modeling of transient three phase flow in complicated 3D geometry connected with industrial networks, Proc. of the Sixth International Topical Meeting on Nuclear Reactor Thermal Hydraulics, Grenoble, France

    Google Scholar 

  • Koumoutsos N, Moissis R, Spyridonos A (May 1968) A study of bubble departure in forced-convection boiling, Journal of Heat Transfer, Transactions of the ASME pp 223-230

    Google Scholar 

  • Kurihara HM, Myers J E (March 1960) The effect of superheat and surface roughness on boiling coefficients, A. I. Ch. E. Journal, vol 6 no 1 pp 83-91

    Google Scholar 

  • Kutateladze SS and Gogonin II (1979) Growth rate and detachment diameter of a vapour bubble in free convection boiling of saturated liquids, High Temperature, vol 17 pp 667-671

    Google Scholar 

  • Labuntsov DA (1974) State of the art of the nucleate boiling mechanism of liquids, Heat Transfer and Physical Hydrodynamics, Moskva, Nauka, in Russian, pp. 98- 115

    Google Scholar 

  • Labuntsov DA, Kol’chugin VA, Golovin VS et al (1964) Teplofiz. Vys. Temp., vol 3 pp 446 – 453

    Google Scholar 

  • Levy S (1967) Forced convection subcooled boiling prediction of vapor volume fraction, Int. J. Heat Mass Transfer, vol 10 pp 951-965

    Article  Google Scholar 

  • Moalem D, Yijl W, van Stralen SJD (1977) Nucleate boiling at a liquid-liquid interface, letters heat and mass transfer, vol 4 pp 319-329

    Article  Google Scholar 

  • Morin R (1964) Wall temperature fluctuations during bubble generation in boiling, inConvective heat transfer in two-phase and one-phase flows, Energiya, Moskva. eds. Borishanskii VM and Paleev II

    Google Scholar 

  • Nishikawa K, Fujita Y, Uchida S, Ohta H (1984) Effect of surface configuration on nucleate boiling heat transfer, Int. J. Heat and Mass Transfer, vol 27 no 9 pp 1559-1571

    Article  Google Scholar 

  • Rallis C J, Jawurek HH (1964) Latent heat transport in saturated nucleate boiling, Int. J. Heat Transfer, vol 7 pp 1051-1068

    Article  Google Scholar 

  • Reichardt H (Juli 1951) Vollständige Darstellung der turbulenten Geschwindigkeiten in glaten Leitungen, Z. angew. Math. Mech., Bd. 31 Nr. 7, S. 208-219

    Google Scholar 

  • Roll JB, Mayers JC (July 1964) The effect of surface tension on factors in boiling heat transfer, A.I.Ch.E.Journal, pp 330-344

    Google Scholar 

  • Ruckenstein E (1961) A physical model for nucleate boiling heat transfer from a horizontal surface, Bul. Institutului Politech. Bucaresti, vol. 33, no. 3. pp. 79-88, 1961 ; Appl. Mech. Rev., vol. 16, Rev. 6055, 1963.

    Google Scholar 

  • Semeria RF (1962) Quelques resultats sur le mechanisme de l’ebullition, 7, J. de l’Hydraulique de la Soc. Hydrotechnique de France

    Google Scholar 

  • Shoji M, Zhang L and Chatpun S (April 17-21, 2005) Nucleation site interaction in pool nucleate boiling, 6th World Conference on Experimental Heat Transfer, Fluid Mechanics, and Thermodynamics, Matsushima, Miyagi, Japan

    Google Scholar 

  • Siegel R, Keshock EG (July 1964) Effects of reduced gravity on nucleate boiling bubble dynamics in saturated water, A.I.Ch.E. Journal, vol 10 no 4 pp 509-517

    Google Scholar 

  • Sultan M, Judd RL (Feb. 1978) Spatial distribution of active sites and bubble flux density, Journal of Heat Transfer, Transactions of the ASME, vol 100 pp 56-62

    Google Scholar 

  • Tolubinsky VI, Ostrovsky JN (1966) On the mechanism of boiling heat transfer (vapor bubbles growth rise in the process of boiling in liquids, solutions, and binary mixtures), Int. J. Heat Mass Transfer, vol 9 pp 1463-1470

    Article  Google Scholar 

  • Ünal HC (1976) Maximum bubble diameter, maximum bubble-growth time and bubble-growth rate during the subcooled nucleate flow boiling of water up to 17.7 MN/m2, Int. J. Heat Mass Transfer vol 19 pp 643-649

    Article  Google Scholar 

  • Vachon RI, Tanger GE, Davis DL, Nix GH (May 1968) Pool boiling on polished chemically etched stainless-steel surfaces, Transactions of ASME, Journal of Heat Transfer, pp 231-238

    Google Scholar 

  • van Krevelen DW, Hoftijzer PJ (1950) Studies of gas- bubble formulation, calculation of interfacial area in bubble contactor, Chem. Eng. Progr. Symp. Ser., vol 46 no 1 pp. 29-35

    Google Scholar 

  • van Stralen S, Cole R (1979) Boiling Phenomena, Hemisphere, USA

    Google Scholar 

  • van Stralen SJD, Sluyter WM, Sohal MS (1975) Bubble growth rates in nucleate boiling of water at subatmospheric pressures, Int. J. Heat and Mass transfer, vol 18 pp 655-669

    Article  Google Scholar 

  • Voloshko AA and Vurgaft AV (November 1970) Dynamics of vapor-bubble break off under free-convection boiling conditions, Heat Transfer-Soviet Research, vol 2 no 6 pp 136-141

    Google Scholar 

  • Wang CH, Dhir VK (Aug. 1993) Effect of surface wettability on active nucleation site density during pool boiling of water on a vertical surface, ASME Journal of Heat Transfer, vol 115 pp 659-669

    Article  Google Scholar 

  • Wiebe JR (1970) Temperature profiles in subcooled nucleate boiling, M. Eng. thes., Mechanical Engineering Department, McMaster University, Canada

    Google Scholar 

  • Yamagata K, Hirano F, Nishikawa K, Matsuoka H (1955) Nucleate boiling of water on the horizontal heating surface, Mem. Fac. Engng, Kyushu Univ, vol 15 p 97

    Google Scholar 

  • Yang JY, Weisman J (1991) A phenomenological model of subcooled flow boiling in the detached bubble region, Int. J. Multiphase Flow, vol 17 no 1 pp 77-94

    Article  MATH  Google Scholar 

  • Zeng LZ, Klausner JF, Mei R (1993) A unified model for the prediction of bubble detachment diameters in boiling systems - 1. Pool boiling, Int. J. of Heat and Mass Transfer, vol 36 no 9 pp 2261 - 2270

    Article  Google Scholar 

  • Zeng L Z, Klausner JF, Bernard DM, Mei R (1993) A unified model for the prediction of bubble detachment diameters in boiling systems - 2. Flow boiling, Int. J. of Heat and Mass Transfer, vol 36 no 9 pp 2271 - 2279

    Article  Google Scholar 

  • Zuber N (1961) The dynamics of vapor bubbles in non uniform temperature fields, Int. J. Heat Mass Transfer, vol 2 pp 83-98

    Article  Google Scholar 

  • Zuber N (1963) Nucleate boiling. The region of isolated bubbles and the similarity with natural convection, Int. J. Heat and Mass Transfer, vol 6 pp 53-78

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag

About this chapter

Cite this chapter

Kolev, N.I. (2007). Bubble Departure Diameter. In: Multiphase Flow Dynamics 2. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-69835-3_15

Download citation

  • DOI: https://doi.org/10.1007/3-540-69835-3_15

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-69834-0

  • Online ISBN: 978-3-540-69835-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics