Chiral Heterobimetallic Lanthanoid Complexes: Highly Efficient Multifunctional Catalysts for the Asymmetric Formation of C-C, C-O, and C-P Bonds

  • Masakatsu Shibasaki
  • Harald Gröger
Part of the Topics in Organometallic Chemistry book series (TOPORGAN, volume 2)


The use of alkali metal-containing, heterobimetallic lanthanoid complexes as catalysts in asymmetric synthesis is reviewed. This new and innovative type of chiral catalyst, which was recently developed by Shibasaki et al., contains a Lewis acid as well as a Brønsted base moiety, thereupon showing a similar mechanistic effect as observed in enzyme chemistry. The heterobimetallic complexes have been successfully applied as highly stereoinducing catalysts in many different types of asymmetric reactions, including the stereoselective formation of C-C, C-O, and C-P bonds.


Heterobimetallic catalysts Lanthanoid complexes Asymmetric synthesis Homogenous catalysis 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References and Notes

  1. 1.
    Noyori R ( 1994) In: Asymmetric catalysis in organic synthesis. Wiley, New YorkGoogle Scholar
  2. 2.
    Ojima I (1993) In: Catalytic asymmetric synthesis. VCH, New YorkGoogle Scholar
  3. 3.
    Steinhagen H, Helmchen G (1996) Angew Chem 208:2489; Angew Chem Int Ed Engl 35:2337CrossRefGoogle Scholar
  4. 4.
    Shibasaki M, Sasai H (1996) Pure & Appl Chem 68:523CrossRefGoogle Scholar
  5. 5.
    Shibasaki M, Sasai H, Arai T (1997) Angew Chem 109:1290; Angew Chem Int Ed Engl 36:1236CrossRefGoogle Scholar
  6. 6.
    Sasai H, Suzuki T, Itoh N, Tanaka K, Date T, Okamura K, Shibasaki M (1993) J Am ChemSoc 115:10,372CrossRefGoogle Scholar
  7. 7.
    Sasai H, Arai T, Satow Y, Houk KN, Shibasaki M (1995) J Am Chem Soc 117:6194CrossRefGoogle Scholar
  8. 8.
    Takaoka E, Yoshikawa N, Yamada YMA, Sasai H, Shibasaki M (1997) Heterocycles 46:157CrossRefGoogle Scholar
  9. 9.
    Sasai H, Suzuki T, Itoh N, Shibasaki M (1993) Tetrahedron Lett 34:851CrossRefGoogle Scholar
  10. 10.
    Gröger H, Saida Y, Sasai H, Yamaguchi K, Martens J, Shibasaki M (1998) J Am Chem Soc (in press)Google Scholar
  11. 11.
    Sasai H, Suzuki T, Arai S, Arai T, Shibasaki M ( 1992) J Am Chem Soc 114:4418CrossRefGoogle Scholar
  12. 12.
    Sasai H, Suzuki T, Itoh N, Arai S, Shibasaki M (1993) Tetrahedron Lett 34:2657CrossRefGoogle Scholar
  13. 13.
    Although the lithium nitronate is first generated, there also appears to be a significant possibility that the aldehyde coordinates to La firstGoogle Scholar
  14. 14.
    A 6,6′-disubstituted BINOL derivative was also used in the asymmetric Diels-Alder reaction by:Terada M, Motoyama Y, Mikami K (1994) Tetrahedron Lett 35:6693CrossRefGoogle Scholar
  15. 15.
    Lingfelter DS, Hegelson RC, Cram DJ (1981) J Org Chem 46:393CrossRefGoogle Scholar
  16. 16.
    Maruoka K, Itoh T, Araki Y, Shirasaka T, Yamamoto H (1988) Bull Chem Soc Jpn 61:2975CrossRefGoogle Scholar
  17. 17.
    Yamamoto K, Noda K, Okamoto Y (1985) J Chem Soc Chem Commun 1065Google Scholar
  18. 18.
    Oshida JI, Okamoto M, Azuma S, Tanaka T (1997) Tetrahedron: Asymmetry 8:2579CrossRefGoogle Scholar
  19. 19.
    Sasai H, Itoh N, Suzuki T, Shibasaki M (1993) Tetrahedron Lett 34:855CrossRefGoogle Scholar
  20. 20.
    Sasai H, Yamada YMA, Suzuki T, Shibasaki M (1994) Tetrahedron 50:12,313CrossRefGoogle Scholar
  21. 21.
    Sasai H, Suzuki T, Itoh N, Shibasaki M (1995) Appl Organomet Chem 9:421CrossRefGoogle Scholar
  22. 22.
    Iseki K, Oishi S, Sasai H, Shibasaki M (1996) Tetrahedron Lett 37:9081CrossRefGoogle Scholar
  23. 23.
    Mimoto T, Imai J, Kisanuki S, Enomoto H, Hattori N, Akaji K, Kiso Y (1992) Chem Pharm Bull 40:2251Google Scholar
  24. 24.
    Kageyama S, Mitsuto T, Murakawa Y, Nomizu M, Ford H Jr, Shirasaka T, Gulnik S, Erickson J, Takada K, Hayashi H, Broder S, Kiso Y, Mitsuya H (1993) Antimicrob Agents Chemother 37:810Google Scholar
  25. 25.
    Sasai H, Kim WS, Suzuki T, Shibasaki M, Mitsuda M, Hasegawa J, Ohashi T (1994) Tetrahedron Lett 35:6123CrossRefGoogle Scholar
  26. 26.
    Morisaki M, Koizumi N, Ikekawa N (1975) J Chem Soc Perkin Trans I 1421CrossRefGoogle Scholar
  27. 27.
    Tanaka H, Abe E, Miyaura C, Kurihashi T, Konno K, Nishii Y, Suda T ( 1982) Biochem J 204:713Google Scholar
  28. 28.
    Kobayashi T, Okumura H, Azuma Y, Kiyoki M, Matsumoto K, Hashimoto K, Yoshikawa K (1990) J Dermatol 17:707Google Scholar
  29. 29.
    Sasai H, Tokunaga T, Watanabe S, Suzuki T, Itoh N, Shibasaki M (1995) J Org Chem 60:7388CrossRefGoogle Scholar
  30. 30.
    Schwartz GK, Jiang J, Kelsen D, Albino AP (1993) J Natl Cancer Inst 85:402CrossRefGoogle Scholar
  31. 31.
    Sasai H, Hiroi M, Yamada YMA, Shibasaki M (1997) Tetrahedron Lett 38:6031CrossRefGoogle Scholar
  32. 32.
    Arai T, Yamada YMA, Yamamoto N, Sasai H, Shibasaki M (1996) Chem Eur J 2:1368CrossRefGoogle Scholar
  33. 33.
    Young M, Pan W, Wiesner J, Bullough D, Browne G, Balow G, Potter S, Metzner K, Mullane K (1994) Drug Dev Res 32:19CrossRefGoogle Scholar
  34. 34.
    Hammond HK, McKirnan MD (1994) J Am Coll Cardiol 23:475CrossRefGoogle Scholar
  35. 35.
    Bach T (1994) Angew Chem 106:433; Angew Chem Int Ed Engl 33:417CrossRefGoogle Scholar
  36. 36.
    Hollis YK, Bosnich B (1995) J Am Chem Soc 117:4570CrossRefGoogle Scholar
  37. 37.
    Gröger H, Vogl EM, Shibasaki M (1998) Chem Eur J 4:1137CrossRefGoogle Scholar
  38. 38.
    Yamada YMA, Yoshikawa N, Sasai H, Shibasaki M (1997) Angew Chem 109:1942; Angew Chem Int Ed Engl 36:1871CrossRefGoogle Scholar
  39. 39.
    Rossiter BE, Swingle NM (1992) Chem Rev 92:771 and references cited thereinCrossRefGoogle Scholar
  40. 40.
    Sawamura M, Hamashima H, Shinoto H, Ito Y (1995) Tetrahedron Lett 36:6479 and references cited thereinCrossRefGoogle Scholar
  41. 41.
    Sasai H, Arai T, Satow Y, Houk KN, Shibasaki M (1995) J Am Chem Soc 117:6194CrossRefGoogle Scholar
  42. 42.
    Sasai H, Arai T, Shibasaki M (1994) J Am Chem Soc 116:1571CrossRefGoogle Scholar
  43. 43.
    Rappe AK, Casewit CJ, Colwell KS, Goddard III WA, Skiff WM (1992) J Am Chem Soc 114:10,024CrossRefGoogle Scholar
  44. 44.
    Casewit CJ, Colwell KS, Rappe AK (1992) J Am Chem Soc 114:10,035CrossRefGoogle Scholar
  45. 45.
    Rappe AK, Colwell KS, Casewitt CJ (1993) Inorg Chem 32:3438CrossRefGoogle Scholar
  46. 46.
    Sasai H, Emori E, Arai T, Shibasaki M ( 1996) Tetrahedron Lett. 37:5561CrossRefGoogle Scholar
  47. 47.
    Kobayashi S, Ishitani H (1994) J Am Chem Soc 116:4083 and references cited thereinCrossRefGoogle Scholar
  48. 48.
    Yamamoto H, Maruoka K, Furuta K (1989) In: Schnizer D (ed) Selectivities in Lewis acid promoted reactions. Kluwer, Dordrecht, p281Google Scholar
  49. 49.
    Morita T, Arai T, Sasai H, Shibasaki M (1998) Tetrahedron: Asymmetry 9:1445iCrossRefGoogle Scholar
  50. 50.
    Katsuki K, Sharpless KB (1980) J Am Chem Soc 102:5974CrossRefGoogle Scholar
  51. 51.
    Hanson R, Sharpless KB (1986) J Org Chem 51:1922CrossRefGoogle Scholar
  52. 52.
    Zhang W, Loebach JL, Wilson SR, Jacobsen EN (1990) J Am Chem Soc 112:2801CrossRefGoogle Scholar
  53. 53.
    Irie R, Noda K, Ito Y, Matsumoto N, Katsuki T (1990) Tetrahedron Lett 31:7345CrossRefGoogle Scholar
  54. 54.
    Yamada T, Imagawa K, Nagata T, Mukaiyama T (1992) Chem Lett 2231Google Scholar
  55. 55.
    For other examples of asymmetric epoxidations, see: Tu Y, Wang ZK, Shi Y ( 1996) J Am Chem Soc 118:9806 and references thereinCrossRefGoogle Scholar
  56. 56.
    Bougauchi M, Watanabe S, Arai T, Sasai H, Shibasaki M (1997) J Am Chem Soc 119:2329CrossRefGoogle Scholar
  57. 57.
    Budt KH, Jian-Qi L, Peyman A, Ruppert D (1992) Tetrahedron Lett 33:6625CrossRefGoogle Scholar
  58. 58.
    Moore ML, Dreyer GB (1993) Perspect Drug Discovery Des 1:85CrossRefGoogle Scholar
  59. 59.
    Burke TR Jr, Barchi JJ Jr, George C, Wolf G, Shoelson SE, Yan X (1995) J Med Chem 38:1386CrossRefGoogle Scholar
  60. 60.
    Kafarski P, Lejczak B (1991) Phosphorus Sulfur Silicon Relat Elem 63:193CrossRefGoogle Scholar
  61. 61.
    Powers JC, Boduszek B, Oleksyszyn J (1995) Georgia Tech Research Corp PCT Int Appl WO 95 29691; Chem Abstr (1996) 124:203,102mGoogle Scholar
  62. 62.
    Boduszek B, Oleksyszyn J, Kam CM, Selzer J, Smith RE, Powers JC (1994) J Med Chem 37:3969CrossRefGoogle Scholar
  63. 63.
    Andrews KJM (1981) Hoffmann-LaRoche. Eur Pat 33,919; Chem Abstr (1982) 96:52,498rGoogle Scholar
  64. 64.
    Drauz K, Koban HG, Martens J, Schwarze W (1985) Degussa AG. US Pat 4,524,211; Chem Abstr (1984) 101:211,458xGoogle Scholar
  65. 65.
    Yokomatsu T, Yamagishi T, Shibuya S (1993) Tetrahedron:Asymmetry 4:1783CrossRefGoogle Scholar
  66. 66.
    Rath NP, Spilling CD (1994) Tetrahadron Lett 35:227CrossRefGoogle Scholar
  67. 67.
    Sasai H, Bougauchi M, Arai T, Shibasaki M (1997) Tetrahedron Lett 38:2717CrossRefGoogle Scholar
  68. 68.
    Yokomatsu T, Yamagishi T, Shibuya S ( 1997) J Chem Soc, Perkin Trans I 1783Google Scholar
  69. 69.
    The Sr (E) values would be a measure of the susceptibility of the substrate to attack by the catalysts based on the distribution of electrons in the frontier orbitalGoogle Scholar
  70. 70.
    Fukui K, Yonezawa T, Nagata C (1954) Bull Chem Soc Jpn 27:423CrossRefGoogle Scholar
  71. 71.
    Kukhar VP, Soloshonok VA, Solodenko VA (1994) Phosphorus Sulfur Silicon Relat. Elem 92:239CrossRefGoogle Scholar
  72. 72.
    Yager KM, Taylor CM, Smith III AB ( 1994) J Am Chem Soc 116:9377 and references cited thereinCrossRefGoogle Scholar
  73. 73.
    Sasai H, Arai S, Tahara Y, Shibasaki M (1995) J Org Chem 60:6656CrossRefGoogle Scholar
  74. 74.
    Molander GA (1992) Chem Rev 92:292CrossRefGoogle Scholar
  75. 75.
    Hoppe I, Schöllkopf K, Nieger M, Egert K (1985) Angew Chem 97:1066; Angew Chem Int Ed Engl 24:1036CrossRefGoogle Scholar
  76. 76.
    Gröger H, Martens J (1996) Synth Commun 26:1903CrossRefGoogle Scholar
  77. 77.
    Gröger H, Saida Y, Arai S, Martens J, Sasai H, Shibasaki M (1996) Tetrahedron Lett. 37:9291CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1999

Authors and Affiliations

  • Masakatsu Shibasaki
    • 1
  • Harald Gröger
    • 1
  1. 1.Graduate School of Pharmaceutical SciencesThe University of TokyoTokyoJapan

Personalised recommendations