Approximation Bounds for a General Class of Precedence Constrained Parallel Machine Scheduling Problems

  • Alix Munier
  • Maurice Queyranne
  • Andreas S. Schulz
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 1412)


A well studied and difficult class of scheduling problems con- cerns parallel machines and precedence constraints. In order to model more realistic situations, we consider precedence delays, associating with each precedence constraint a certain amount of time which must elapse between the completion and start times of the corresponding jobs. Re- lease dates, among others, may be modeled in this fashion. We provide the first constant-factor approximation algorithms for the makespan and the total weighted completion time objectives in this general class of problems. These algorithms are rather simple and practical forms of list scheduling. Our analysis also unifies and simplifies that of a number of special cases heretofore separately studied, while actually improving some of the former approximation results.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    A. von Arnim, R. Schrader, and Y. Wang. The permutahedron of N-sparse posets. Mathematical Programming, 75:1–18, 1996.MathSciNetGoogle Scholar
  2. 2.
    A. von Arnim and A. S. Schulz. Facets of the generalized permutahedron of a poset. Discrete Applied Mathematics, 72:179–192, 1997.MATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    E. Balas, J. K. Lenstra, and A. Vazacopoulos. The one machine problem with delayed precedence constraints and its use in job-shop scheduling. Management Science, 41:94–109, 1995.MATHGoogle Scholar
  4. 4.
    M. Bartusch, R. H. Möhring, and F. J. Radermacher. Scheduling project networks with resource constraints and time windows. Annals of Operations Research, 16:201–240, 1988.CrossRefMathSciNetGoogle Scholar
  5. 5.
    D. Bernstein and I. Gertner. Scheduling expressions on a pipelined processor with a maximum delay of one cycle. ACM Transactions on Programming Languages and Systems, 11:57–66, 1989.MATHCrossRefGoogle Scholar
  6. 6.
    J. Bruno, J. W. Jones, and K. So. Deterministic scheduling with pipelined processors. IEEE Transactions on Computers, C-29:308–316, 1980.MathSciNetCrossRefGoogle Scholar
  7. 7.
    S. Chakrabarti, C. A. Phillips, A. S. Schulz, D. B. Shmoys, C. Stein, and J. Wein. Improved scheduling algorithms for minsum criteria. In F. Meyer auf der Heide and B. Monien, editors, Automata, Languages and Programming, LNCS, Vol. 1099, pages 646–657. Springer, Berlin, 1996.Google Scholar
  8. 8.
    C. S. Chekuri, R. Motwani, B. Natarajan, and C. Stein. Approximation techniques for average completion time scheduling. In Proceedings of the 8th ACM-SIAM Symposium on Discrete Algorithms, pages 609–618, 1997.Google Scholar
  9. 9.
    P. Chrétienne and C. Picouleau. Scheduling with communication delays: A survey. In P. Chrétienne, E. G. Coffman Jr., J. K. Lenstra, and Z. Liu, editors, Scheduling Theory and its Applications, chapter 4, pages 65–90. John Wiley & Sons, 1995.Google Scholar
  10. 10.
    F. A. Chudak and D. B. Shmoys. Approximation algorithms for precedence-constrained scheduling problems on parallel machines that run at different speeds. In Proceedings of the 8th ACM-SIAM Symposium on Discrete Algorithms, pages 581–590, 1997.Google Scholar
  11. 11.
    M. R. Garey and D. S. Johnson. Computers and Intractability: A Guide to the Theory of NP-Completeness. Freeman, San Francisco, 1979.MATHGoogle Scholar
  12. 12.
    M. X. Goemans. Improved approximation algorithms for scheduling with release dates. In Proceedings of the 8th ACM-SIAM Symposium on Discrete Algorithms, pages 591–598, 1997.Google Scholar
  13. 13.
    M. X. Goemans, M. Queyranne, A. S. Schulz, M. Skutella, and Y. Wang. Single machine scheduling with release dates. Working paper, 1997.Google Scholar
  14. 14.
    R. L. Graham. Bounds for certain multiprocessing anomalies. Bell System Tech. J., 45:1563–1581, 1966.Google Scholar
  15. 15.
    R. L. Graham, E. L. Lawler, J. K. Lenstra, and A. H. G. Rinnooy Kan. Optimization and approximation in deterministic sequencing and scheduling: A survey. Annals of Discrete Mathematics, 5:287–326, 1979.MATHCrossRefMathSciNetGoogle Scholar
  16. 16.
    L. A. Hall, A. S. Schulz, D. B. Shmoys, and J. Wein. Scheduling to minimize average completion time: Off-line and on-line approximation algorithms. Mathematics of Operations Research, 22:513–544, 1997.MATHMathSciNetGoogle Scholar
  17. 17.
    W. Herroelen and E. Demeulemeester. Recent advances in branch-and-bound procedures for resource-constrained project scheduling problems. In P. Chrétienne, E. G. Coffman Jr., J. K. Lenstra, and Z. Liu, editors, Scheduling Theory and its Applications, chapter 12, pages 259–276. John Wiley & Sons, 1995.Google Scholar
  18. 18.
    J. A. Hoogeveen, P. Schuurman, and G. J. Woeginger. Non-approximability results for scheduling problems with minsum criteria. In R. E. Bixby, E. A. Boyd, and R. Z. Ríos-Mercado, editors, Proceedings of the 6th International IPCO Conference, LNCS, Vol. 1412, pages 344–357. Springer, 1998. This volume.Google Scholar
  19. 19.
    J. A. Hoogeveen, B. Veltman, and J. K. Lenstra. Three, four, five, six, or the complexity of scheduling with communication delays. Operations Research Letters, 3:129–137, 1994.CrossRefMathSciNetGoogle Scholar
  20. 20.
    J. M. Jaffe. Efficient scheduling of tasks without full use of processor resources. Theoretical Computer Science, 12:1–17, 1980.MATHCrossRefMathSciNetGoogle Scholar
  21. 21.
    E. Lawler, J. K. Lenstra, C. Martel, B. Simons, and L. Stockmeyer. Pipeline scheduling: A survey. Technical Report RJ 5738 (57717), IBM Research Division, San Jose, California, 1987.Google Scholar
  22. 22.
    E. L. Lawler, J. K. Lenstra, A. H. G. Rinnooy Kan, and D. B. Shmoys. Sequencing and scheduling: Algorithms and complexity. In S. C. Graves, A. H. G. Rinnooy Kan, and P. H. Zipkin, editors, Logistics of Production and Inventory, Handbooks in Operations Research and Management Science, Vol. 4, chapter 9, pages 445–522. North-Holland, Amsterdam, The Netherlands, 1993.Google Scholar
  23. 23.
    J. K. Lenstra and A. H. G. Rinnooy Kan. Complexity of scheduling under precedence constraints. Operations Research, 26:22–35, 1978.MATHMathSciNetGoogle Scholar
  24. 24.
    J. Y.-T. Leung, O. Vornberger, and J. Witthoff. On some variants of the bandwidth minimization problem. SIAM J. Computing, 13:650–667, 1984.MATHCrossRefMathSciNetGoogle Scholar
  25. 25.
    R. H. Möhring, M. W. Schäffter, and A. S. Schulz. Scheduling jobs with communication delays: Using infeasible solutions for approximation. In J. Diaz and M. Serna, editors, Algorithms-ESA’96, LNCS, Vol. 1136, pages 76–90. Springer, Berlin, 1996.Google Scholar
  26. 26.
    A. Munier and J.-C. König. A heuristic for a scheduling problem with communication delays. Operations Research, 45:145–147, 1997.MATHGoogle Scholar
  27. 27.
    A. Munier, M. Queyranne, and A. S. Schulz. Approximation bounds for a general class of precedence constrained parallel machine scheduling problems. Preprint 584/1998, Department of Mathematics, Technical University of Berlin, Berlin, Germany, 1998. Scholar
  28. 28.
    K. W. Palem and B. Simons. Scheduling time critical instructions on RISC machines. In Proceedings of the 17th Annual Symposium on Principles of Programming Languages, pages 270–280, 1990.Google Scholar
  29. 29.
    C. Phillips, C. Stein, and J. Wein. Scheduling jobs that arrive over time. In Proceedings of the Fourth Workshop on Algorithms and Data Structures, LNCS, Vol. 955, pages 86–97. Springer, Berlin, 1995.Google Scholar
  30. 30.
    M. Queyranne. Structure of a simple scheduling polyhedron. Mathematical Programming, 58:263–285, 1993.MATHCrossRefMathSciNetGoogle Scholar
  31. 31.
    M. Queyranne and Y. Wang. Single-machine scheduling polyhedra with precedence constraints. Mathematics of Operations Research, 16:1–20, 1991.MATHMathSciNetCrossRefGoogle Scholar
  32. 32.
    V. J. Rayward-Smith. UET scheduling with unit interprocessor communication delays. Discrete Applied Mathematics, 18:55–71, 1987.MATHCrossRefMathSciNetGoogle Scholar
  33. 33.
    A. S. Schulz. Polytopes and Scheduling. PhD thesis, Technical University of Berlin, Berlin, Germany, 1996.MATHGoogle Scholar
  34. 34.
    A. S. Schulz. Scheduling to minimize total weighted completion time: Performance guarantees of LP-based heuristics and lower bounds. In W. H. Cunningham, S. T. McCormick, and M. Queyranne, editors, Integer Programming and Combinatorial Optimization, LNCS, Vol. 1084, pages 301–315. Springer, Berlin, 1996.Google Scholar
  35. 35.
    A. S. Schulz and M. Skutella. Random-based scheduling: New approximations and LP lower bounds. In J. Rolim, editor, Randomization and Approximation Techniques in Computer Science, LNCS, Vol. 1269, pages 119–133. Springer, Berlin, 1997.Google Scholar
  36. 36.
    A. S. Schulz and M. Skutella. Scheduling-LPs bear probabilities: Randomized approximations for min-sum criteria. In R. Burkard and G. Woeginger, editors, Algorithms — ESA’97, LNCS, Vol. 1284, pages 416–429. Springer, Berlin, 1997.Google Scholar
  37. 37.
    E. D. Wikum, D. C. Llewellyn, and G. L. Nemhauser. One-machine generalized precedence constrained scheduling problems. Operations Research Letters, 16:87–89, 1994.MATHCrossRefMathSciNetGoogle Scholar
  38. 38.
    L. A. Wolsey, August 1985. Invited Talk at the 12th International Symposium on Mathematical Programming, MIT, Cambridge.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1998

Authors and Affiliations

  • Alix Munier
    • 1
  • Maurice Queyranne
    • 2
    • 4
  • Andreas S. Schulz
    • 3
  1. 1.Laboratoire LIP6Université Pierre et Marie CurieParis, cedex 05France
  2. 2.Faculty of Commerce and Business AdministrationUniversity of British ColumbiaVancouverCanada
  3. 3.Fachbereich Mathematik, MA 6-1Technische Universität BerlinBerlinGermany
  4. 4.Università di Bologna — Sede di RiminiRiminiItaly

Personalised recommendations