Similarity in Two-Dimensional Strings

  • Ricardo A. Baeza-Yates
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 1449)


In this paper we discuss how to compute the edit distance (or similarity) between two images. We present new similarity measures and how to compute them. They can be used to perform more general two-dimensional approximate pattern matching. Previous work on two-dimensional approximate string matching either work with only substitutions or a restricted edit distance that allows only some type of errors.


Pattern Match Edit Distance Longe Common Subsequence Approximate Match Approximate String Match 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    A. Amir and M. Farach. Efficient 2-dimensional approximate matching of non-rectangular figures. In Proc. SODA’91, pages 212–223, San Francisco, CA, Jan 1991.Google Scholar
  2. 2.
    A. Amir and G. Landau. Fast parallel and serial multidimensional approximate array matching. Theoretical Computer Science, 81:97–115, 1991. Also as report CS-TR-2288, Dept. of Computer Science, Univ. of Maryland, 1989.zbMATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    M. Atallah. A linear time algorithm for the Hausdorff distance between convex polygons, Information Processing Letters 17, 207–209, 1983.zbMATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    R. Baeza-Yates and G. Navarro. Fast two-dimensional approximate string matching. In LATIN’98, Campinas, Brazil, April 1998. Springer-Verlag LNCS 1380, edited by C. Lucchesi and A. Moura, 341–351.Google Scholar
  5. 5.
    M. Crochemore and W. Rytter. Text Algorithms. Oxford University Press, Oxford, UK, 1994.zbMATHGoogle Scholar
  6. 6.
    C. Faloutsos, R. Barber, M. Flickner, J. Hafner, W. Niblack, D. Petkovic, and W. Equitz. Efficient and effective querying by image content. J. of Intelligent Information Systems, 3:231–262, 1994.CrossRefGoogle Scholar
  7. 7.
    M. Flickner, H. Sawhney, W. Niblack, J. Ashley, Q. Huang, B. Dom, M. Gorkani, J. Hafner, D. Petkovic, and W. Equitz.Google Scholar
  8. 8.
    R. Giancarlo. A generalization of suffix trees to square matrices, with applications. SIAM J. on Computing, 24:520–562, 1995.zbMATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    J. Karkkäinen and E. Ukkonen. Two and higher dimensional pattern matching in optimal expected time. In Proc. SODA’94, pages 715–723. SIAM, 1994.Google Scholar
  10. 10.
    K. Krithivasan. Efficient two-dimensional parallel and serial approximate pattern matching. Technical Report CAR-TR-259, University of Maryland, 1987.Google Scholar
  11. 11.
    K. Krithivasan and R. Sitalakshmi. Efficient two-dimensional pattern matching in the presence of errors. Information Sciences, 43:169–184, 1987.CrossRefGoogle Scholar
  12. 12.
    K. Park. Analysis of two dimensional approximate pattern matching algorithms. In Proc. CPM’96, LNCS 1075, pages 335–347, 1996.Google Scholar
  13. 13.
    S. Ranka and T. Heywood. Two-dimensional pattern matching with k mismatches. Pattern recognition, 24(1):31–40, 1991.CrossRefMathSciNetGoogle Scholar
  14. 14.
    P. Sellers. The theory and computation of evolutionary distances: pattern recognition. J. of Algorithms, 1:359–373, 1980.zbMATHCrossRefMathSciNetGoogle Scholar
  15. 15.
    P. Suetens, P. Fua, and A. Hanson. Computational Strategies for Object Recognition, ACM Computing Surveys, 24:5–62, 1992.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1998

Authors and Affiliations

  • Ricardo A. Baeza-Yates
    • 1
  1. 1.Depto. de Ciencias de la ComputaciónUniversidad de ChileSantiagoChile

Personalised recommendations