Advertisement

A Linear-Time Algorithm for Constructing an Optimal Node-Search Strategy of a Tree

  • Sheng-Lung Peng
  • Chin-Wen Ho
  • Tsan-sheng Hsu
  • Ming-Tat Ko
  • Chuan Yi Tang
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 1449)

Abstract

Ellis et al., proposed algorithms (in terms of vertex separation) to compute the node-search number of an n-vertex tree T in O(n) time and to construct an optimal node-search strategy of T in O(n log n) time. An open problem is whether the latter can also be done in linear time. In this paper, we solve this open problem by exploring fundamental graph theoretical properties.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    S. Arnborg, D.G. Corneil, and A. Proskurowski, Complexity of finding embeddings in a k-tree, SIAM J. Alg. Disc. Meth., 8(1987), 277–284.zbMATHMathSciNetCrossRefGoogle Scholar
  2. 2.
    D. Bienstock, Graph searching, path-width, tree-width and related problems (a survey), in: F. Roberts, F. Hwang and C. Monma, eds., Reliability of Computer and Communication Networks, DIMACS series in Disc. Math. and Theoretical Comp. Scie., Vol 5, American Math. Society, 1991, 33–49.Google Scholar
  3. 3.
    D. Bienstock and P. Seymour, Monotonicity in graph searching, J. Algorithms, 12(1991), 239–245.zbMATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    H.L. Bodlaender, A partial k-arboretum of graphs with bounded treewidth, Technical Report UU-CS-1996-02, Department of Computer Science, Utrecht University, Utrecht, the Netherlands, 1996.Google Scholar
  5. 5.
    H.L. Bodlaender and T. Kloks, Efficient and constructive algorithms for the pathwidth and treewidth of graphs, J. Algorithms, 21(1996), 358–402.zbMATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    H.L. Bodlaender, T. Kloks, and D. Kratsch, Treewidth and pathwidth of permutation graphs, SIAM J. Disc. Math., 8(1995), 606–616.zbMATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    H.L. Bodlaender, T. Kloks, D. Kratsch, and H. Muller, Treewidth and minimum fill-in on d-trapezoid graphs, Technical Report UU-CS-1995-34, Department of Computer Science, Utrecht University, Utrecht, the Netherlands, 1995.Google Scholar
  8. 8.
    H.L. Bodlaender and R.H. Möhring, The pathwidth and treewidth of cographs, SIAM J. Disc. Math., 6(1993), 181–188.zbMATHCrossRefGoogle Scholar
  9. 9.
    J.A. Ellis, I.H. Sudborough, and J.S. Turner, The vertexsepa ration and search number of a graph, Information and Computation, 113(1994), 50–79.zbMATHCrossRefMathSciNetGoogle Scholar
  10. 10.
    F.V. Fomin and N.N. Petrov, Pursuit-evasion and search problems on graphs, In Nonlinear and Game-Theoretic Control Synthesis, Euler Int. Math. Institute, St. Petersburg, 13–26 March, 1995, Update May 1996.Google Scholar
  11. 11.
    J. Gustedt, On the pathwidth of chordal graphs, Disc. Appl. Math., 45(1993), 233–248.zbMATHCrossRefMathSciNetGoogle Scholar
  12. 12.
    N.G. Kinnersley, The vertex separation number of a graph equals its path-width, Inform. Process. Lett., 42(1992), 345–350.zbMATHCrossRefMathSciNetGoogle Scholar
  13. 13.
    T. Kloks, Treewidth, Computations and Applications, LNCS 842, Springer, 1994.Google Scholar
  14. 14.
    T. Kloks, H. Bodlaender, H. Muller, and D. Kratsch, Computing treewidth and minimum fill-in: all you need are the minimal separators, ESA’93, LNCS 726, 260–271, 1993. Erratum: ESA’94, LNCS 855, pp. 508, 1994.Google Scholar
  15. 15.
    L.M. Kirousis and C.H. Papadimitriou, Interval graph and searching, Disc. Math., 55(1985), 181–184.zbMATHCrossRefMathSciNetGoogle Scholar
  16. 16.
    L.M. Kirousis and C.H. Papadimitriou, Searching and pebbling, Theoretical Comput. Scie., 47(1986), 205–218.zbMATHCrossRefMathSciNetGoogle Scholar
  17. 17.
    A. Kornai and Z. Tuza, Narrowness, pathwidth, and their application in natural language processing, Disc. Appl. Math., 36(1992), 87–92.zbMATHCrossRefMathSciNetGoogle Scholar
  18. 18.
    A.S. LaPaugh, Recontamination does not help to search a graph, J. Assoc. Comput. Mach., 40(1993), 224–245.zbMATHMathSciNetGoogle Scholar
  19. 19.
    N. Megiddo, S.L. Hakimi, M.R. Garey, D.S. Johnson, and C.H. Papadimitriou, The complexity of searching a graph, J. Assoc. Comput. Mach., 35(1988), 18–44.zbMATHMathSciNetGoogle Scholar
  20. 20.
    R.H. Möhring, Graph problems related to gate matrix layout and PLA folding, in: G. Tinnhofer et al., eds., Computational Graph Theory, Springer, 1990, 17–32.Google Scholar
  21. 21.
    B. Monien and I.H. Sudborough, Min cut is NP-complete for edge weighted trees, Theoretical Comput. Sci., 58(1988), 209–229.zbMATHCrossRefMathSciNetGoogle Scholar
  22. 22.
    T.D. Parsons, Pursuit-evasion in a graph, in Y. Alavi and D.R. Lick, eds., Theory and applications of graphs, Springer-Verlag, New York, 1976, 426–441.Google Scholar
  23. 23.
    S.L. Peng, C.W. Ho, T.-s. Hsu, M.T. Ko, and C.Y. Tang, Edge and node searching problems on trees, COCOON’97, LNCS 1276, 284–293, 1997.Google Scholar
  24. 24.
    S.L. Peng, M.T. Ko, C.W. Ho, T.-s. Hsu, and C.Y. Tang, Graph searching on chordal graphs, ISAAC’96, LNCS 1178, 156–165, 1996.Google Scholar
  25. 25.
    N. Robertson and P.D. Seymour, Graph minors I. Excluding a forest, J. Comb. Theory Ser. B, 35(1983), 39–61.zbMATHCrossRefMathSciNetGoogle Scholar
  26. 26.
    P. Scheffler, A linear algorithm for the pathwidth of trees, in: R. Bodendiek and R. Henn, eds., Topics in Combinatorics and Graph Theory (Physica-Verlag, Heidelberg, 1990), 613–620.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1998

Authors and Affiliations

  • Sheng-Lung Peng
    • 1
  • Chin-Wen Ho
    • 3
  • Tsan-sheng Hsu
    • 2
  • Ming-Tat Ko
    • 2
  • Chuan Yi Tang
    • 1
  1. 1.National Tsing Hua UniversityTaiwan
  2. 2.Academia SinicaTaiwan
  3. 3.National Central UniversityTaiwan

Personalised recommendations