Advertisement

Min-Max-Boundary Domain Decomposition

  • Marcos Kiwi
  • Daniel A. Spielman
  • Shang-Hua Teng
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 1449)

Abstract

Domain decomposition is one of the most effective and popular parallel computing techniques for solving large scale numerical systems. In the special case when the amount of computation in a subdomain is proportional to the volume of the subdomain, domain decomposition amounts to minimizing the surface area of each subdomain while dividing the volume evenly. Motivated by this fact, we study the following min-max boundary multi-way partitioning problem: Given a graph G and an integer k > 1, we would like to divide G into k subgraphs G 1, . . . , G k (by removing edges) such that (i) |G i| = Θ(|G|/k) for all i ∈ 1, . . . , k; and (ii) the maximum boundary size of any subgraph (the set of edges connecting it with other subgraphs) is minimized.

We provide an algorithm that given G, a well-shaped mesh in d dimensions, finds a partition of G into k subgraphs G 1, . . . , G k, such that for all i, G i has Θ(|G|/k) vertices and the number of edges connecting G i with the other subgraphs is O((|G|/k)1−1/d ). Our algorithm can find such a partition in O(|G| log k) time. Finally, we extend our results to vertex-weighted and vertex-based graph decomposition. Our results can be used to simultaneously balance the computational and memory requirement on a distributed-memory parallel computer without sacrificing the communication overhead.

Keywords

Planar Graph Domain Decomposition Decomposition Tree Separator Theorem Degree Graph 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    N. Alon, P. Seymour, and R. Thomas. A separator theorem for graphs with an excluded minor and its applications. In STOC90, pages 293–299. ACM, 1990.Google Scholar
  2. 2.
    J. Barnes and P. Hut. A hierarchical O(n log n) force calculation algorithm. Nature, (324):446–449, 1986.CrossRefGoogle Scholar
  3. 3.
    M. Benantar, R. Biswas, J. E. Flaherty, and M. S. Shephard. Parallel computation with adaptive methods for elliptic and hyperbolic systems. Comp. Methods Applied Mech. and Eng., pages 73–93, 1990.Google Scholar
  4. 4.
    M. Bern, D. Eppstein, and J. R. Gilbert. Provably good mesh generation. In FOCS90, pages 231–241. IEEE, 1990.Google Scholar
  5. 5.
    S. N. Bhatt and F. T. Leighton. A framework for solving VLSI graph layout Problems. JCSS, 28, pp 300–343, 1984.zbMATHMathSciNetGoogle Scholar
  6. 6.
    J. H. Bramble, J. E. Pasciak, and A. H. Schatz. An iterative method for elliptic problems on regions partitioned into substructures. Math. Comp., 46:361–9, 1986.zbMATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    J. Carrier, L. Greengard, and V. Rokhlin. A fast adaptive multipole algorithm for particle simulations. SIAM J. Sci. Statist. Comput. 9:669–686, 1988.zbMATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    T. F. Chan and T. P. Mathew. Domain decomposition algorithms. Acta Numerica, pages 61–144, 1994.Google Scholar
  9. 9.
    J. R. Gilbert, G. L. Miller, and S.-H. Teng. Geometric mesh partitioning: Implementation and experiments. In SIAM J. Sci. Comput., to appear, 1999.Google Scholar
  10. 10.
    J.R. Gilbert, J.P. Hutchinson, and R.E. Tarjan. A separation theorem for graphs of bounded genus. Journal of Algorithms, 5:391–407, 1984.zbMATHCrossRefMathSciNetGoogle Scholar
  11. 11.
    R. J. Lipton and R. E. Tarjan. A separator theorem for planar graphs. SIAM J. of Appl. Math., 36:177–189, April 1979.zbMATHCrossRefMathSciNetGoogle Scholar
  12. 12.
    R. J. Lipton, D. J. Rose, and R. E. Tarjan. Generalized nested dissection. SIAM J. on Numerical Analysis, 16:346–358, 1979.zbMATHCrossRefMathSciNetGoogle Scholar
  13. 13.
    G. L. Miller, S.-H. Teng, W. Thurston, and S. A. Vavasis. Finite element meshes and geometric separators. SIAM J. Sci. Comput., to appear, 1999.Google Scholar
  14. 14.
    G. L. Miller, S.-H. Teng, W. Thurston, and S. A. Vavasis. Separators for sphere-packings and nearest neighborhood graphs. J. ACM, Jan. 1997.Google Scholar
  15. 15.
    H. D. Simon and S.-H. Teng. How good is recursive bisection? SIAM J. Sci. Comput., to appear, 1996.Google Scholar
  16. 16.
    D. A. Spielman and S.-H. Teng. Spectral partitioning works: planar graphs and finite element meshes. In FOCS96, pages 96–107, IEEE, 1996.Google Scholar
  17. 17.
    G. Strang and G. J. Fix. An Analysis of the Finite Element Method. Prentice-Hall, Englewood Cliffs, New Jersey, 1973.zbMATHGoogle Scholar
  18. 18.
    S.-H. Teng. Provably good partitioning and load balancing algorithms for parallel adaptive n-body simulation. SIAM J. Scientific Computing, to appear, 1999.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1998

Authors and Affiliations

  • Marcos Kiwi
    • 1
  • Daniel A. Spielman
    • 2
  • Shang-Hua Teng
    • 3
  1. 1.Dept. de Ingeniería Matemática, Fac. de Ciencias Físicas y MatemáticasU. de ChileSantiagoChile
  2. 2.Department of MathematicsM.I.T.CambridgeUSA
  3. 3.Department of Computer ScienceUniversity of IllinoisUrbanaUSA

Personalised recommendations